include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {28,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,4}*1568
if this polytope has a name.
Group : SmallGroup(1568,821)
Rank : 3
Schlafli Type : {28,4}
Number of vertices, edges, etc : 196, 392, 28
Order of s0s1s2 : 4
Order of s0s1s2s1 : 14
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Skewing Operation
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {14,4}*784
4-fold quotients : {14,4}*392
49-fold quotients : {4,4}*32
98-fold quotients : {2,4}*16, {4,2}*16
196-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 99)( 2,105)( 3,104)( 4,103)( 5,102)( 6,101)( 7,100)( 8,141)
( 9,147)( 10,146)( 11,145)( 12,144)( 13,143)( 14,142)( 15,134)( 16,140)
( 17,139)( 18,138)( 19,137)( 20,136)( 21,135)( 22,127)( 23,133)( 24,132)
( 25,131)( 26,130)( 27,129)( 28,128)( 29,120)( 30,126)( 31,125)( 32,124)
( 33,123)( 34,122)( 35,121)( 36,113)( 37,119)( 38,118)( 39,117)( 40,116)
( 41,115)( 42,114)( 43,106)( 44,112)( 45,111)( 46,110)( 47,109)( 48,108)
( 49,107)( 50,148)( 51,154)( 52,153)( 53,152)( 54,151)( 55,150)( 56,149)
( 57,190)( 58,196)( 59,195)( 60,194)( 61,193)( 62,192)( 63,191)( 64,183)
( 65,189)( 66,188)( 67,187)( 68,186)( 69,185)( 70,184)( 71,176)( 72,182)
( 73,181)( 74,180)( 75,179)( 76,178)( 77,177)( 78,169)( 79,175)( 80,174)
( 81,173)( 82,172)( 83,171)( 84,170)( 85,162)( 86,168)( 87,167)( 88,166)
( 89,165)( 90,164)( 91,163)( 92,155)( 93,161)( 94,160)( 95,159)( 96,158)
( 97,157)( 98,156);;
s1 := ( 1, 2)( 3, 7)( 4, 6)( 8, 14)( 9, 13)( 10, 12)( 15, 19)( 16, 18)
( 20, 21)( 22, 24)( 25, 28)( 26, 27)( 30, 35)( 31, 34)( 32, 33)( 36, 41)
( 37, 40)( 38, 39)( 43, 46)( 44, 45)( 47, 49)( 50, 51)( 52, 56)( 53, 55)
( 57, 63)( 58, 62)( 59, 61)( 64, 68)( 65, 67)( 69, 70)( 71, 73)( 74, 77)
( 75, 76)( 79, 84)( 80, 83)( 81, 82)( 85, 90)( 86, 89)( 87, 88)( 92, 95)
( 93, 94)( 96, 98)( 99,149)(100,148)(101,154)(102,153)(103,152)(104,151)
(105,150)(106,161)(107,160)(108,159)(109,158)(110,157)(111,156)(112,155)
(113,166)(114,165)(115,164)(116,163)(117,162)(118,168)(119,167)(120,171)
(121,170)(122,169)(123,175)(124,174)(125,173)(126,172)(127,176)(128,182)
(129,181)(130,180)(131,179)(132,178)(133,177)(134,188)(135,187)(136,186)
(137,185)(138,184)(139,183)(140,189)(141,193)(142,192)(143,191)(144,190)
(145,196)(146,195)(147,194);;
s2 := ( 2, 44)( 3, 38)( 4, 32)( 5, 26)( 6, 20)( 7, 14)( 8, 43)( 9, 37)
( 10, 31)( 11, 25)( 12, 19)( 15, 36)( 16, 30)( 17, 24)( 21, 49)( 22, 29)
( 27, 48)( 28, 42)( 33, 47)( 34, 41)( 39, 46)( 51, 93)( 52, 87)( 53, 81)
( 54, 75)( 55, 69)( 56, 63)( 57, 92)( 58, 86)( 59, 80)( 60, 74)( 61, 68)
( 64, 85)( 65, 79)( 66, 73)( 70, 98)( 71, 78)( 76, 97)( 77, 91)( 82, 96)
( 83, 90)( 88, 95)(100,142)(101,136)(102,130)(103,124)(104,118)(105,112)
(106,141)(107,135)(108,129)(109,123)(110,117)(113,134)(114,128)(115,122)
(119,147)(120,127)(125,146)(126,140)(131,145)(132,139)(137,144)(149,191)
(150,185)(151,179)(152,173)(153,167)(154,161)(155,190)(156,184)(157,178)
(158,172)(159,166)(162,183)(163,177)(164,171)(168,196)(169,176)(174,195)
(175,189)(180,194)(181,188)(186,193);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(196)!( 1, 99)( 2,105)( 3,104)( 4,103)( 5,102)( 6,101)( 7,100)
( 8,141)( 9,147)( 10,146)( 11,145)( 12,144)( 13,143)( 14,142)( 15,134)
( 16,140)( 17,139)( 18,138)( 19,137)( 20,136)( 21,135)( 22,127)( 23,133)
( 24,132)( 25,131)( 26,130)( 27,129)( 28,128)( 29,120)( 30,126)( 31,125)
( 32,124)( 33,123)( 34,122)( 35,121)( 36,113)( 37,119)( 38,118)( 39,117)
( 40,116)( 41,115)( 42,114)( 43,106)( 44,112)( 45,111)( 46,110)( 47,109)
( 48,108)( 49,107)( 50,148)( 51,154)( 52,153)( 53,152)( 54,151)( 55,150)
( 56,149)( 57,190)( 58,196)( 59,195)( 60,194)( 61,193)( 62,192)( 63,191)
( 64,183)( 65,189)( 66,188)( 67,187)( 68,186)( 69,185)( 70,184)( 71,176)
( 72,182)( 73,181)( 74,180)( 75,179)( 76,178)( 77,177)( 78,169)( 79,175)
( 80,174)( 81,173)( 82,172)( 83,171)( 84,170)( 85,162)( 86,168)( 87,167)
( 88,166)( 89,165)( 90,164)( 91,163)( 92,155)( 93,161)( 94,160)( 95,159)
( 96,158)( 97,157)( 98,156);
s1 := Sym(196)!( 1, 2)( 3, 7)( 4, 6)( 8, 14)( 9, 13)( 10, 12)( 15, 19)
( 16, 18)( 20, 21)( 22, 24)( 25, 28)( 26, 27)( 30, 35)( 31, 34)( 32, 33)
( 36, 41)( 37, 40)( 38, 39)( 43, 46)( 44, 45)( 47, 49)( 50, 51)( 52, 56)
( 53, 55)( 57, 63)( 58, 62)( 59, 61)( 64, 68)( 65, 67)( 69, 70)( 71, 73)
( 74, 77)( 75, 76)( 79, 84)( 80, 83)( 81, 82)( 85, 90)( 86, 89)( 87, 88)
( 92, 95)( 93, 94)( 96, 98)( 99,149)(100,148)(101,154)(102,153)(103,152)
(104,151)(105,150)(106,161)(107,160)(108,159)(109,158)(110,157)(111,156)
(112,155)(113,166)(114,165)(115,164)(116,163)(117,162)(118,168)(119,167)
(120,171)(121,170)(122,169)(123,175)(124,174)(125,173)(126,172)(127,176)
(128,182)(129,181)(130,180)(131,179)(132,178)(133,177)(134,188)(135,187)
(136,186)(137,185)(138,184)(139,183)(140,189)(141,193)(142,192)(143,191)
(144,190)(145,196)(146,195)(147,194);
s2 := Sym(196)!( 2, 44)( 3, 38)( 4, 32)( 5, 26)( 6, 20)( 7, 14)( 8, 43)
( 9, 37)( 10, 31)( 11, 25)( 12, 19)( 15, 36)( 16, 30)( 17, 24)( 21, 49)
( 22, 29)( 27, 48)( 28, 42)( 33, 47)( 34, 41)( 39, 46)( 51, 93)( 52, 87)
( 53, 81)( 54, 75)( 55, 69)( 56, 63)( 57, 92)( 58, 86)( 59, 80)( 60, 74)
( 61, 68)( 64, 85)( 65, 79)( 66, 73)( 70, 98)( 71, 78)( 76, 97)( 77, 91)
( 82, 96)( 83, 90)( 88, 95)(100,142)(101,136)(102,130)(103,124)(104,118)
(105,112)(106,141)(107,135)(108,129)(109,123)(110,117)(113,134)(114,128)
(115,122)(119,147)(120,127)(125,146)(126,140)(131,145)(132,139)(137,144)
(149,191)(150,185)(151,179)(152,173)(153,167)(154,161)(155,190)(156,184)
(157,178)(158,172)(159,166)(162,183)(163,177)(164,171)(168,196)(169,176)
(174,195)(175,189)(180,194)(181,188)(186,193);
poly := sub<Sym(196)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope