Polytope of Type {10,2,20,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,20,2}*1600
if this polytope has a name.
Group : SmallGroup(1600,10161)
Rank : 5
Schlafli Type : {10,2,20,2}
Number of vertices, edges, etc : 10, 10, 20, 20, 2
Order of s0s1s2s3s4 : 20
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,2,20,2}*800, {10,2,10,2}*800
   4-fold quotients : {5,2,10,2}*400, {10,2,5,2}*400
   5-fold quotients : {2,2,20,2}*320, {10,2,4,2}*320
   8-fold quotients : {5,2,5,2}*200
   10-fold quotients : {5,2,4,2}*160, {2,2,10,2}*160, {10,2,2,2}*160
   20-fold quotients : {2,2,5,2}*80, {5,2,2,2}*80
   25-fold quotients : {2,2,4,2}*64
   50-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13)(14,15)(17,20)(18,19)(21,22)(23,24)(25,28)(26,27)(29,30);;
s3 := (11,17)(12,14)(13,23)(15,25)(16,19)(18,21)(20,29)(22,26)(24,27)(28,30);;
s4 := (31,32);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(32)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(32)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(32)!(12,13)(14,15)(17,20)(18,19)(21,22)(23,24)(25,28)(26,27)(29,30);
s3 := Sym(32)!(11,17)(12,14)(13,23)(15,25)(16,19)(18,21)(20,29)(22,26)(24,27)
(28,30);
s4 := Sym(32)!(31,32);
poly := sub<Sym(32)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope