include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,5,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,5,2}*400
if this polytope has a name.
Group : SmallGroup(400,218)
Rank : 5
Schlafli Type : {10,2,5,2}
Number of vertices, edges, etc : 10, 10, 5, 5, 2
Order of s0s1s2s3s4 : 10
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{10,2,5,2,2} of size 800
{10,2,5,2,3} of size 1200
{10,2,5,2,4} of size 1600
{10,2,5,2,5} of size 2000
Vertex Figure Of :
{2,10,2,5,2} of size 800
{4,10,2,5,2} of size 1600
{5,10,2,5,2} of size 2000
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,5,2}*200
5-fold quotients : {2,2,5,2}*80
Covers (Minimal Covers in Boldface) :
2-fold covers : {20,2,5,2}*800, {10,2,10,2}*800
3-fold covers : {10,2,15,2}*1200, {30,2,5,2}*1200
4-fold covers : {40,2,5,2}*1600, {10,2,20,2}*1600, {20,2,10,2}*1600, {10,2,10,4}*1600, {10,4,10,2}*1600
5-fold covers : {10,2,25,2}*2000, {50,2,5,2}*2000, {10,10,5,2}*2000a, {10,2,5,10}*2000, {10,10,5,2}*2000b
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (12,13)(14,15);;
s3 := (11,12)(13,14);;
s4 := (16,17);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(17)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(17)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(17)!(12,13)(14,15);
s3 := Sym(17)!(11,12)(13,14);
s4 := Sym(17)!(16,17);
poly := sub<Sym(17)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope