include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {20,2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,2,20}*1600
if this polytope has a name.
Group : SmallGroup(1600,7445)
Rank : 4
Schlafli Type : {20,2,20}
Number of vertices, edges, etc : 20, 20, 20, 20
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,2,20}*800, {20,2,10}*800
4-fold quotients : {5,2,20}*400, {20,2,5}*400, {10,2,10}*400
5-fold quotients : {4,2,20}*320, {20,2,4}*320
8-fold quotients : {5,2,10}*200, {10,2,5}*200
10-fold quotients : {2,2,20}*160, {20,2,2}*160, {4,2,10}*160, {10,2,4}*160
16-fold quotients : {5,2,5}*100
20-fold quotients : {4,2,5}*80, {5,2,4}*80, {2,2,10}*80, {10,2,2}*80
25-fold quotients : {4,2,4}*64
40-fold quotients : {2,2,5}*40, {5,2,2}*40
50-fold quotients : {2,2,4}*32, {4,2,2}*32
100-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20);;
s1 := ( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,19)(12,16)(14,17)(18,20);;
s2 := (22,23)(24,25)(27,30)(28,29)(31,32)(33,34)(35,38)(36,37)(39,40);;
s3 := (21,27)(22,24)(23,33)(25,35)(26,29)(28,31)(30,39)(32,36)(34,37)(38,40);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!( 2, 3)( 4, 5)( 7,10)( 8, 9)(11,12)(13,14)(15,18)(16,17)(19,20);
s1 := Sym(40)!( 1, 7)( 2, 4)( 3,13)( 5,15)( 6, 9)( 8,11)(10,19)(12,16)(14,17)
(18,20);
s2 := Sym(40)!(22,23)(24,25)(27,30)(28,29)(31,32)(33,34)(35,38)(36,37)(39,40);
s3 := Sym(40)!(21,27)(22,24)(23,33)(25,35)(26,29)(28,31)(30,39)(32,36)(34,37)
(38,40);
poly := sub<Sym(40)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope