Polytope of Type {2,408}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,408}*1632
if this polytope has a name.
Group : SmallGroup(1632,864)
Rank : 3
Schlafli Type : {2,408}
Number of vertices, edges, etc : 2, 408, 408
Order of s0s1s2 : 408
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,204}*816
   3-fold quotients : {2,136}*544
   4-fold quotients : {2,102}*408
   6-fold quotients : {2,68}*272
   8-fold quotients : {2,51}*204
   12-fold quotients : {2,34}*136
   17-fold quotients : {2,24}*96
   24-fold quotients : {2,17}*68
   34-fold quotients : {2,12}*48
   51-fold quotients : {2,8}*32
   68-fold quotients : {2,6}*24
   102-fold quotients : {2,4}*16
   136-fold quotients : {2,3}*12
   204-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 19)(  5, 18)(  6, 17)(  7, 16)(  8, 15)(  9, 14)( 10, 13)( 11, 12)
( 20, 37)( 21, 53)( 22, 52)( 23, 51)( 24, 50)( 25, 49)( 26, 48)( 27, 47)
( 28, 46)( 29, 45)( 30, 44)( 31, 43)( 32, 42)( 33, 41)( 34, 40)( 35, 39)
( 36, 38)( 55, 70)( 56, 69)( 57, 68)( 58, 67)( 59, 66)( 60, 65)( 61, 64)
( 62, 63)( 71, 88)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)
( 78, 98)( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)
( 86, 90)( 87, 89)(105,156)(106,172)(107,171)(108,170)(109,169)(110,168)
(111,167)(112,166)(113,165)(114,164)(115,163)(116,162)(117,161)(118,160)
(119,159)(120,158)(121,157)(122,190)(123,206)(124,205)(125,204)(126,203)
(127,202)(128,201)(129,200)(130,199)(131,198)(132,197)(133,196)(134,195)
(135,194)(136,193)(137,192)(138,191)(139,173)(140,189)(141,188)(142,187)
(143,186)(144,185)(145,184)(146,183)(147,182)(148,181)(149,180)(150,179)
(151,178)(152,177)(153,176)(154,175)(155,174)(207,309)(208,325)(209,324)
(210,323)(211,322)(212,321)(213,320)(214,319)(215,318)(216,317)(217,316)
(218,315)(219,314)(220,313)(221,312)(222,311)(223,310)(224,343)(225,359)
(226,358)(227,357)(228,356)(229,355)(230,354)(231,353)(232,352)(233,351)
(234,350)(235,349)(236,348)(237,347)(238,346)(239,345)(240,344)(241,326)
(242,342)(243,341)(244,340)(245,339)(246,338)(247,337)(248,336)(249,335)
(250,334)(251,333)(252,332)(253,331)(254,330)(255,329)(256,328)(257,327)
(258,360)(259,376)(260,375)(261,374)(262,373)(263,372)(264,371)(265,370)
(266,369)(267,368)(268,367)(269,366)(270,365)(271,364)(272,363)(273,362)
(274,361)(275,394)(276,410)(277,409)(278,408)(279,407)(280,406)(281,405)
(282,404)(283,403)(284,402)(285,401)(286,400)(287,399)(288,398)(289,397)
(290,396)(291,395)(292,377)(293,393)(294,392)(295,391)(296,390)(297,389)
(298,388)(299,387)(300,386)(301,385)(302,384)(303,383)(304,382)(305,381)
(306,380)(307,379)(308,378);;
s2 := (  3,225)(  4,224)(  5,240)(  6,239)(  7,238)(  8,237)(  9,236)( 10,235)
( 11,234)( 12,233)( 13,232)( 14,231)( 15,230)( 16,229)( 17,228)( 18,227)
( 19,226)( 20,208)( 21,207)( 22,223)( 23,222)( 24,221)( 25,220)( 26,219)
( 27,218)( 28,217)( 29,216)( 30,215)( 31,214)( 32,213)( 33,212)( 34,211)
( 35,210)( 36,209)( 37,242)( 38,241)( 39,257)( 40,256)( 41,255)( 42,254)
( 43,253)( 44,252)( 45,251)( 46,250)( 47,249)( 48,248)( 49,247)( 50,246)
( 51,245)( 52,244)( 53,243)( 54,276)( 55,275)( 56,291)( 57,290)( 58,289)
( 59,288)( 60,287)( 61,286)( 62,285)( 63,284)( 64,283)( 65,282)( 66,281)
( 67,280)( 68,279)( 69,278)( 70,277)( 71,259)( 72,258)( 73,274)( 74,273)
( 75,272)( 76,271)( 77,270)( 78,269)( 79,268)( 80,267)( 81,266)( 82,265)
( 83,264)( 84,263)( 85,262)( 86,261)( 87,260)( 88,293)( 89,292)( 90,308)
( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)( 96,302)( 97,301)( 98,300)
( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)(105,378)(106,377)
(107,393)(108,392)(109,391)(110,390)(111,389)(112,388)(113,387)(114,386)
(115,385)(116,384)(117,383)(118,382)(119,381)(120,380)(121,379)(122,361)
(123,360)(124,376)(125,375)(126,374)(127,373)(128,372)(129,371)(130,370)
(131,369)(132,368)(133,367)(134,366)(135,365)(136,364)(137,363)(138,362)
(139,395)(140,394)(141,410)(142,409)(143,408)(144,407)(145,406)(146,405)
(147,404)(148,403)(149,402)(150,401)(151,400)(152,399)(153,398)(154,397)
(155,396)(156,327)(157,326)(158,342)(159,341)(160,340)(161,339)(162,338)
(163,337)(164,336)(165,335)(166,334)(167,333)(168,332)(169,331)(170,330)
(171,329)(172,328)(173,310)(174,309)(175,325)(176,324)(177,323)(178,322)
(179,321)(180,320)(181,319)(182,318)(183,317)(184,316)(185,315)(186,314)
(187,313)(188,312)(189,311)(190,344)(191,343)(192,359)(193,358)(194,357)
(195,356)(196,355)(197,354)(198,353)(199,352)(200,351)(201,350)(202,349)
(203,348)(204,347)(205,346)(206,345);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(410)!(1,2);
s1 := Sym(410)!(  4, 19)(  5, 18)(  6, 17)(  7, 16)(  8, 15)(  9, 14)( 10, 13)
( 11, 12)( 20, 37)( 21, 53)( 22, 52)( 23, 51)( 24, 50)( 25, 49)( 26, 48)
( 27, 47)( 28, 46)( 29, 45)( 30, 44)( 31, 43)( 32, 42)( 33, 41)( 34, 40)
( 35, 39)( 36, 38)( 55, 70)( 56, 69)( 57, 68)( 58, 67)( 59, 66)( 60, 65)
( 61, 64)( 62, 63)( 71, 88)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)
( 77, 99)( 78, 98)( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)
( 85, 91)( 86, 90)( 87, 89)(105,156)(106,172)(107,171)(108,170)(109,169)
(110,168)(111,167)(112,166)(113,165)(114,164)(115,163)(116,162)(117,161)
(118,160)(119,159)(120,158)(121,157)(122,190)(123,206)(124,205)(125,204)
(126,203)(127,202)(128,201)(129,200)(130,199)(131,198)(132,197)(133,196)
(134,195)(135,194)(136,193)(137,192)(138,191)(139,173)(140,189)(141,188)
(142,187)(143,186)(144,185)(145,184)(146,183)(147,182)(148,181)(149,180)
(150,179)(151,178)(152,177)(153,176)(154,175)(155,174)(207,309)(208,325)
(209,324)(210,323)(211,322)(212,321)(213,320)(214,319)(215,318)(216,317)
(217,316)(218,315)(219,314)(220,313)(221,312)(222,311)(223,310)(224,343)
(225,359)(226,358)(227,357)(228,356)(229,355)(230,354)(231,353)(232,352)
(233,351)(234,350)(235,349)(236,348)(237,347)(238,346)(239,345)(240,344)
(241,326)(242,342)(243,341)(244,340)(245,339)(246,338)(247,337)(248,336)
(249,335)(250,334)(251,333)(252,332)(253,331)(254,330)(255,329)(256,328)
(257,327)(258,360)(259,376)(260,375)(261,374)(262,373)(263,372)(264,371)
(265,370)(266,369)(267,368)(268,367)(269,366)(270,365)(271,364)(272,363)
(273,362)(274,361)(275,394)(276,410)(277,409)(278,408)(279,407)(280,406)
(281,405)(282,404)(283,403)(284,402)(285,401)(286,400)(287,399)(288,398)
(289,397)(290,396)(291,395)(292,377)(293,393)(294,392)(295,391)(296,390)
(297,389)(298,388)(299,387)(300,386)(301,385)(302,384)(303,383)(304,382)
(305,381)(306,380)(307,379)(308,378);
s2 := Sym(410)!(  3,225)(  4,224)(  5,240)(  6,239)(  7,238)(  8,237)(  9,236)
( 10,235)( 11,234)( 12,233)( 13,232)( 14,231)( 15,230)( 16,229)( 17,228)
( 18,227)( 19,226)( 20,208)( 21,207)( 22,223)( 23,222)( 24,221)( 25,220)
( 26,219)( 27,218)( 28,217)( 29,216)( 30,215)( 31,214)( 32,213)( 33,212)
( 34,211)( 35,210)( 36,209)( 37,242)( 38,241)( 39,257)( 40,256)( 41,255)
( 42,254)( 43,253)( 44,252)( 45,251)( 46,250)( 47,249)( 48,248)( 49,247)
( 50,246)( 51,245)( 52,244)( 53,243)( 54,276)( 55,275)( 56,291)( 57,290)
( 58,289)( 59,288)( 60,287)( 61,286)( 62,285)( 63,284)( 64,283)( 65,282)
( 66,281)( 67,280)( 68,279)( 69,278)( 70,277)( 71,259)( 72,258)( 73,274)
( 74,273)( 75,272)( 76,271)( 77,270)( 78,269)( 79,268)( 80,267)( 81,266)
( 82,265)( 83,264)( 84,263)( 85,262)( 86,261)( 87,260)( 88,293)( 89,292)
( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)( 96,302)( 97,301)
( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)(105,378)
(106,377)(107,393)(108,392)(109,391)(110,390)(111,389)(112,388)(113,387)
(114,386)(115,385)(116,384)(117,383)(118,382)(119,381)(120,380)(121,379)
(122,361)(123,360)(124,376)(125,375)(126,374)(127,373)(128,372)(129,371)
(130,370)(131,369)(132,368)(133,367)(134,366)(135,365)(136,364)(137,363)
(138,362)(139,395)(140,394)(141,410)(142,409)(143,408)(144,407)(145,406)
(146,405)(147,404)(148,403)(149,402)(150,401)(151,400)(152,399)(153,398)
(154,397)(155,396)(156,327)(157,326)(158,342)(159,341)(160,340)(161,339)
(162,338)(163,337)(164,336)(165,335)(166,334)(167,333)(168,332)(169,331)
(170,330)(171,329)(172,328)(173,310)(174,309)(175,325)(176,324)(177,323)
(178,322)(179,321)(180,320)(181,319)(182,318)(183,317)(184,316)(185,315)
(186,314)(187,313)(188,312)(189,311)(190,344)(191,343)(192,359)(193,358)
(194,357)(195,356)(196,355)(197,354)(198,353)(199,352)(200,351)(201,350)
(202,349)(203,348)(204,347)(205,346)(206,345);
poly := sub<Sym(410)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope