Polytope of Type {2,104,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,104,4}*1664a
if this polytope has a name.
Group : SmallGroup(1664,13688)
Rank : 4
Schlafli Type : {2,104,4}
Number of vertices, edges, etc : 2, 104, 208, 4
Order of s0s1s2s3 : 104
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,52,4}*832, {2,104,2}*832
   4-fold quotients : {2,52,2}*416, {2,26,4}*416
   8-fold quotients : {2,26,2}*208
   13-fold quotients : {2,8,4}*128a
   16-fold quotients : {2,13,2}*104
   26-fold quotients : {2,4,4}*64, {2,8,2}*64
   52-fold quotients : {2,2,4}*32, {2,4,2}*32
   104-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)( 17, 28)( 18, 27)
( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 30, 41)( 31, 40)( 32, 39)( 33, 38)
( 34, 37)( 35, 36)( 43, 54)( 44, 53)( 45, 52)( 46, 51)( 47, 50)( 48, 49)
( 55, 68)( 56, 80)( 57, 79)( 58, 78)( 59, 77)( 60, 76)( 61, 75)( 62, 74)
( 63, 73)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 81, 94)( 82,106)( 83,105)
( 84,104)( 85,103)( 86,102)( 87,101)( 88,100)( 89, 99)( 90, 98)( 91, 97)
( 92, 96)( 93, 95)(107,159)(108,171)(109,170)(110,169)(111,168)(112,167)
(113,166)(114,165)(115,164)(116,163)(117,162)(118,161)(119,160)(120,172)
(121,184)(122,183)(123,182)(124,181)(125,180)(126,179)(127,178)(128,177)
(129,176)(130,175)(131,174)(132,173)(133,185)(134,197)(135,196)(136,195)
(137,194)(138,193)(139,192)(140,191)(141,190)(142,189)(143,188)(144,187)
(145,186)(146,198)(147,210)(148,209)(149,208)(150,207)(151,206)(152,205)
(153,204)(154,203)(155,202)(156,201)(157,200)(158,199);;
s2 := (  3,108)(  4,107)(  5,119)(  6,118)(  7,117)(  8,116)(  9,115)( 10,114)
( 11,113)( 12,112)( 13,111)( 14,110)( 15,109)( 16,121)( 17,120)( 18,132)
( 19,131)( 20,130)( 21,129)( 22,128)( 23,127)( 24,126)( 25,125)( 26,124)
( 27,123)( 28,122)( 29,134)( 30,133)( 31,145)( 32,144)( 33,143)( 34,142)
( 35,141)( 36,140)( 37,139)( 38,138)( 39,137)( 40,136)( 41,135)( 42,147)
( 43,146)( 44,158)( 45,157)( 46,156)( 47,155)( 48,154)( 49,153)( 50,152)
( 51,151)( 52,150)( 53,149)( 54,148)( 55,173)( 56,172)( 57,184)( 58,183)
( 59,182)( 60,181)( 61,180)( 62,179)( 63,178)( 64,177)( 65,176)( 66,175)
( 67,174)( 68,160)( 69,159)( 70,171)( 71,170)( 72,169)( 73,168)( 74,167)
( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)( 80,161)( 81,199)( 82,198)
( 83,210)( 84,209)( 85,208)( 86,207)( 87,206)( 88,205)( 89,204)( 90,203)
( 91,202)( 92,201)( 93,200)( 94,186)( 95,185)( 96,197)( 97,196)( 98,195)
( 99,194)(100,193)(101,192)(102,191)(103,190)(104,189)(105,188)(106,187);;
s3 := (107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)(114,140)
(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)(122,148)
(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)
(131,157)(132,158)(159,185)(160,186)(161,187)(162,188)(163,189)(164,190)
(165,191)(166,192)(167,193)(168,194)(169,195)(170,196)(171,197)(172,198)
(173,199)(174,200)(175,201)(176,202)(177,203)(178,204)(179,205)(180,206)
(181,207)(182,208)(183,209)(184,210);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(210)!(1,2);
s1 := Sym(210)!(  4, 15)(  5, 14)(  6, 13)(  7, 12)(  8, 11)(  9, 10)( 17, 28)
( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 30, 41)( 31, 40)( 32, 39)
( 33, 38)( 34, 37)( 35, 36)( 43, 54)( 44, 53)( 45, 52)( 46, 51)( 47, 50)
( 48, 49)( 55, 68)( 56, 80)( 57, 79)( 58, 78)( 59, 77)( 60, 76)( 61, 75)
( 62, 74)( 63, 73)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 81, 94)( 82,106)
( 83,105)( 84,104)( 85,103)( 86,102)( 87,101)( 88,100)( 89, 99)( 90, 98)
( 91, 97)( 92, 96)( 93, 95)(107,159)(108,171)(109,170)(110,169)(111,168)
(112,167)(113,166)(114,165)(115,164)(116,163)(117,162)(118,161)(119,160)
(120,172)(121,184)(122,183)(123,182)(124,181)(125,180)(126,179)(127,178)
(128,177)(129,176)(130,175)(131,174)(132,173)(133,185)(134,197)(135,196)
(136,195)(137,194)(138,193)(139,192)(140,191)(141,190)(142,189)(143,188)
(144,187)(145,186)(146,198)(147,210)(148,209)(149,208)(150,207)(151,206)
(152,205)(153,204)(154,203)(155,202)(156,201)(157,200)(158,199);
s2 := Sym(210)!(  3,108)(  4,107)(  5,119)(  6,118)(  7,117)(  8,116)(  9,115)
( 10,114)( 11,113)( 12,112)( 13,111)( 14,110)( 15,109)( 16,121)( 17,120)
( 18,132)( 19,131)( 20,130)( 21,129)( 22,128)( 23,127)( 24,126)( 25,125)
( 26,124)( 27,123)( 28,122)( 29,134)( 30,133)( 31,145)( 32,144)( 33,143)
( 34,142)( 35,141)( 36,140)( 37,139)( 38,138)( 39,137)( 40,136)( 41,135)
( 42,147)( 43,146)( 44,158)( 45,157)( 46,156)( 47,155)( 48,154)( 49,153)
( 50,152)( 51,151)( 52,150)( 53,149)( 54,148)( 55,173)( 56,172)( 57,184)
( 58,183)( 59,182)( 60,181)( 61,180)( 62,179)( 63,178)( 64,177)( 65,176)
( 66,175)( 67,174)( 68,160)( 69,159)( 70,171)( 71,170)( 72,169)( 73,168)
( 74,167)( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)( 80,161)( 81,199)
( 82,198)( 83,210)( 84,209)( 85,208)( 86,207)( 87,206)( 88,205)( 89,204)
( 90,203)( 91,202)( 92,201)( 93,200)( 94,186)( 95,185)( 96,197)( 97,196)
( 98,195)( 99,194)(100,193)(101,192)(102,191)(103,190)(104,189)(105,188)
(106,187);
s3 := Sym(210)!(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)(113,139)
(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)(121,147)
(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)
(130,156)(131,157)(132,158)(159,185)(160,186)(161,187)(162,188)(163,189)
(164,190)(165,191)(166,192)(167,193)(168,194)(169,195)(170,196)(171,197)
(172,198)(173,199)(174,200)(175,201)(176,202)(177,203)(178,204)(179,205)
(180,206)(181,207)(182,208)(183,209)(184,210);
poly := sub<Sym(210)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope