include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,52,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,52,2}*416
if this polytope has a name.
Group : SmallGroup(416,214)
Rank : 4
Schlafli Type : {2,52,2}
Number of vertices, edges, etc : 2, 52, 52, 2
Order of s0s1s2s3 : 52
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,52,2,2} of size 832
{2,52,2,3} of size 1248
{2,52,2,4} of size 1664
Vertex Figure Of :
{2,2,52,2} of size 832
{3,2,52,2} of size 1248
{4,2,52,2} of size 1664
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,26,2}*208
4-fold quotients : {2,13,2}*104
13-fold quotients : {2,4,2}*32
26-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,52,4}*832, {4,52,2}*832, {2,104,2}*832
3-fold covers : {2,52,6}*1248a, {6,52,2}*1248a, {2,156,2}*1248
4-fold covers : {4,52,4}*1664, {2,52,8}*1664a, {8,52,2}*1664a, {2,104,4}*1664a, {4,104,2}*1664a, {2,52,8}*1664b, {8,52,2}*1664b, {2,104,4}*1664b, {4,104,2}*1664b, {2,52,4}*1664, {4,52,2}*1664, {2,208,2}*1664
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)
(25,28)(26,27)(29,30)(31,32)(33,36)(34,35)(37,38)(39,40)(41,44)(42,43)(45,46)
(47,48)(49,52)(50,51)(53,54);;
s2 := ( 3, 9)( 4, 6)( 5,15)( 7,17)( 8,11)(10,13)(12,23)(14,25)(16,19)(18,21)
(20,31)(22,33)(24,27)(26,29)(28,39)(30,41)(32,35)(34,37)(36,47)(38,49)(40,43)
(42,45)(44,53)(46,50)(48,51)(52,54);;
s3 := (55,56);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(56)!(1,2);
s1 := Sym(56)!( 4, 5)( 6, 7)( 9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,22)
(23,24)(25,28)(26,27)(29,30)(31,32)(33,36)(34,35)(37,38)(39,40)(41,44)(42,43)
(45,46)(47,48)(49,52)(50,51)(53,54);
s2 := Sym(56)!( 3, 9)( 4, 6)( 5,15)( 7,17)( 8,11)(10,13)(12,23)(14,25)(16,19)
(18,21)(20,31)(22,33)(24,27)(26,29)(28,39)(30,41)(32,35)(34,37)(36,47)(38,49)
(40,43)(42,45)(44,53)(46,50)(48,51)(52,54);
s3 := Sym(56)!(55,56);
poly := sub<Sym(56)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope