include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,104}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,104}*416
if this polytope has a name.
Group : SmallGroup(416,124)
Rank : 3
Schlafli Type : {2,104}
Number of vertices, edges, etc : 2, 104, 104
Order of s0s1s2 : 104
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,104,2} of size 832
{2,104,4} of size 1664
{2,104,4} of size 1664
Vertex Figure Of :
{2,2,104} of size 832
{3,2,104} of size 1248
{4,2,104} of size 1664
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,52}*208
4-fold quotients : {2,26}*104
8-fold quotients : {2,13}*52
13-fold quotients : {2,8}*32
26-fold quotients : {2,4}*16
52-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {4,104}*832a, {2,208}*832
3-fold covers : {6,104}*1248, {2,312}*1248
4-fold covers : {4,104}*1664a, {8,104}*1664b, {8,104}*1664c, {4,208}*1664a, {4,208}*1664b, {2,416}*1664
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)( 17, 28)( 18, 27)
( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 29, 42)( 30, 54)( 31, 53)( 32, 52)
( 33, 51)( 34, 50)( 35, 49)( 36, 48)( 37, 47)( 38, 46)( 39, 45)( 40, 44)
( 41, 43)( 55, 81)( 56, 93)( 57, 92)( 58, 91)( 59, 90)( 60, 89)( 61, 88)
( 62, 87)( 63, 86)( 64, 85)( 65, 84)( 66, 83)( 67, 82)( 68, 94)( 69,106)
( 70,105)( 71,104)( 72,103)( 73,102)( 74,101)( 75,100)( 76, 99)( 77, 98)
( 78, 97)( 79, 96)( 80, 95);;
s2 := ( 3, 56)( 4, 55)( 5, 67)( 6, 66)( 7, 65)( 8, 64)( 9, 63)( 10, 62)
( 11, 61)( 12, 60)( 13, 59)( 14, 58)( 15, 57)( 16, 69)( 17, 68)( 18, 80)
( 19, 79)( 20, 78)( 21, 77)( 22, 76)( 23, 75)( 24, 74)( 25, 73)( 26, 72)
( 27, 71)( 28, 70)( 29, 95)( 30, 94)( 31,106)( 32,105)( 33,104)( 34,103)
( 35,102)( 36,101)( 37,100)( 38, 99)( 39, 98)( 40, 97)( 41, 96)( 42, 82)
( 43, 81)( 44, 93)( 45, 92)( 46, 91)( 47, 90)( 48, 89)( 49, 88)( 50, 87)
( 51, 86)( 52, 85)( 53, 84)( 54, 83);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(106)!(1,2);
s1 := Sym(106)!( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)( 17, 28)
( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 29, 42)( 30, 54)( 31, 53)
( 32, 52)( 33, 51)( 34, 50)( 35, 49)( 36, 48)( 37, 47)( 38, 46)( 39, 45)
( 40, 44)( 41, 43)( 55, 81)( 56, 93)( 57, 92)( 58, 91)( 59, 90)( 60, 89)
( 61, 88)( 62, 87)( 63, 86)( 64, 85)( 65, 84)( 66, 83)( 67, 82)( 68, 94)
( 69,106)( 70,105)( 71,104)( 72,103)( 73,102)( 74,101)( 75,100)( 76, 99)
( 77, 98)( 78, 97)( 79, 96)( 80, 95);
s2 := Sym(106)!( 3, 56)( 4, 55)( 5, 67)( 6, 66)( 7, 65)( 8, 64)( 9, 63)
( 10, 62)( 11, 61)( 12, 60)( 13, 59)( 14, 58)( 15, 57)( 16, 69)( 17, 68)
( 18, 80)( 19, 79)( 20, 78)( 21, 77)( 22, 76)( 23, 75)( 24, 74)( 25, 73)
( 26, 72)( 27, 71)( 28, 70)( 29, 95)( 30, 94)( 31,106)( 32,105)( 33,104)
( 34,103)( 35,102)( 36,101)( 37,100)( 38, 99)( 39, 98)( 40, 97)( 41, 96)
( 42, 82)( 43, 81)( 44, 93)( 45, 92)( 46, 91)( 47, 90)( 48, 89)( 49, 88)
( 50, 87)( 51, 86)( 52, 85)( 53, 84)( 54, 83);
poly := sub<Sym(106)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope