include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,104,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,104,4}*1664b
if this polytope has a name.
Group : SmallGroup(1664,13836)
Rank : 4
Schlafli Type : {2,104,4}
Number of vertices, edges, etc : 2, 104, 208, 4
Order of s0s1s2s3 : 104
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,52,4}*832
4-fold quotients : {2,52,2}*416, {2,26,4}*416
8-fold quotients : {2,26,2}*208
13-fold quotients : {2,8,4}*128b
16-fold quotients : {2,13,2}*104
26-fold quotients : {2,4,4}*64
52-fold quotients : {2,2,4}*32, {2,4,2}*32
104-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)( 17, 28)( 18, 27)
( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 29, 42)( 30, 54)( 31, 53)( 32, 52)
( 33, 51)( 34, 50)( 35, 49)( 36, 48)( 37, 47)( 38, 46)( 39, 45)( 40, 44)
( 41, 43)( 55, 68)( 56, 80)( 57, 79)( 58, 78)( 59, 77)( 60, 76)( 61, 75)
( 62, 74)( 63, 73)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 82, 93)( 83, 92)
( 84, 91)( 85, 90)( 86, 89)( 87, 88)( 95,106)( 96,105)( 97,104)( 98,103)
( 99,102)(100,101)(107,159)(108,171)(109,170)(110,169)(111,168)(112,167)
(113,166)(114,165)(115,164)(116,163)(117,162)(118,161)(119,160)(120,172)
(121,184)(122,183)(123,182)(124,181)(125,180)(126,179)(127,178)(128,177)
(129,176)(130,175)(131,174)(132,173)(133,198)(134,210)(135,209)(136,208)
(137,207)(138,206)(139,205)(140,204)(141,203)(142,202)(143,201)(144,200)
(145,199)(146,185)(147,197)(148,196)(149,195)(150,194)(151,193)(152,192)
(153,191)(154,190)(155,189)(156,188)(157,187)(158,186);;
s2 := ( 3,108)( 4,107)( 5,119)( 6,118)( 7,117)( 8,116)( 9,115)( 10,114)
( 11,113)( 12,112)( 13,111)( 14,110)( 15,109)( 16,121)( 17,120)( 18,132)
( 19,131)( 20,130)( 21,129)( 22,128)( 23,127)( 24,126)( 25,125)( 26,124)
( 27,123)( 28,122)( 29,134)( 30,133)( 31,145)( 32,144)( 33,143)( 34,142)
( 35,141)( 36,140)( 37,139)( 38,138)( 39,137)( 40,136)( 41,135)( 42,147)
( 43,146)( 44,158)( 45,157)( 46,156)( 47,155)( 48,154)( 49,153)( 50,152)
( 51,151)( 52,150)( 53,149)( 54,148)( 55,173)( 56,172)( 57,184)( 58,183)
( 59,182)( 60,181)( 61,180)( 62,179)( 63,178)( 64,177)( 65,176)( 66,175)
( 67,174)( 68,160)( 69,159)( 70,171)( 71,170)( 72,169)( 73,168)( 74,167)
( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)( 80,161)( 81,199)( 82,198)
( 83,210)( 84,209)( 85,208)( 86,207)( 87,206)( 88,205)( 89,204)( 90,203)
( 91,202)( 92,201)( 93,200)( 94,186)( 95,185)( 96,197)( 97,196)( 98,195)
( 99,194)(100,193)(101,192)(102,191)(103,190)(104,189)(105,188)(106,187);;
s3 := ( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)( 62, 75)
( 63, 76)( 64, 77)( 65, 78)( 66, 79)( 67, 80)( 81, 94)( 82, 95)( 83, 96)
( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)( 90,103)( 91,104)
( 92,105)( 93,106)(107,133)(108,134)(109,135)(110,136)(111,137)(112,138)
(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)(120,146)
(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)
(129,155)(130,156)(131,157)(132,158)(159,198)(160,199)(161,200)(162,201)
(163,202)(164,203)(165,204)(166,205)(167,206)(168,207)(169,208)(170,209)
(171,210)(172,185)(173,186)(174,187)(175,188)(176,189)(177,190)(178,191)
(179,192)(180,193)(181,194)(182,195)(183,196)(184,197);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(210)!(1,2);
s1 := Sym(210)!( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)( 17, 28)
( 18, 27)( 19, 26)( 20, 25)( 21, 24)( 22, 23)( 29, 42)( 30, 54)( 31, 53)
( 32, 52)( 33, 51)( 34, 50)( 35, 49)( 36, 48)( 37, 47)( 38, 46)( 39, 45)
( 40, 44)( 41, 43)( 55, 68)( 56, 80)( 57, 79)( 58, 78)( 59, 77)( 60, 76)
( 61, 75)( 62, 74)( 63, 73)( 64, 72)( 65, 71)( 66, 70)( 67, 69)( 82, 93)
( 83, 92)( 84, 91)( 85, 90)( 86, 89)( 87, 88)( 95,106)( 96,105)( 97,104)
( 98,103)( 99,102)(100,101)(107,159)(108,171)(109,170)(110,169)(111,168)
(112,167)(113,166)(114,165)(115,164)(116,163)(117,162)(118,161)(119,160)
(120,172)(121,184)(122,183)(123,182)(124,181)(125,180)(126,179)(127,178)
(128,177)(129,176)(130,175)(131,174)(132,173)(133,198)(134,210)(135,209)
(136,208)(137,207)(138,206)(139,205)(140,204)(141,203)(142,202)(143,201)
(144,200)(145,199)(146,185)(147,197)(148,196)(149,195)(150,194)(151,193)
(152,192)(153,191)(154,190)(155,189)(156,188)(157,187)(158,186);
s2 := Sym(210)!( 3,108)( 4,107)( 5,119)( 6,118)( 7,117)( 8,116)( 9,115)
( 10,114)( 11,113)( 12,112)( 13,111)( 14,110)( 15,109)( 16,121)( 17,120)
( 18,132)( 19,131)( 20,130)( 21,129)( 22,128)( 23,127)( 24,126)( 25,125)
( 26,124)( 27,123)( 28,122)( 29,134)( 30,133)( 31,145)( 32,144)( 33,143)
( 34,142)( 35,141)( 36,140)( 37,139)( 38,138)( 39,137)( 40,136)( 41,135)
( 42,147)( 43,146)( 44,158)( 45,157)( 46,156)( 47,155)( 48,154)( 49,153)
( 50,152)( 51,151)( 52,150)( 53,149)( 54,148)( 55,173)( 56,172)( 57,184)
( 58,183)( 59,182)( 60,181)( 61,180)( 62,179)( 63,178)( 64,177)( 65,176)
( 66,175)( 67,174)( 68,160)( 69,159)( 70,171)( 71,170)( 72,169)( 73,168)
( 74,167)( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)( 80,161)( 81,199)
( 82,198)( 83,210)( 84,209)( 85,208)( 86,207)( 87,206)( 88,205)( 89,204)
( 90,203)( 91,202)( 92,201)( 93,200)( 94,186)( 95,185)( 96,197)( 97,196)
( 98,195)( 99,194)(100,193)(101,192)(102,191)(103,190)(104,189)(105,188)
(106,187);
s3 := Sym(210)!( 55, 68)( 56, 69)( 57, 70)( 58, 71)( 59, 72)( 60, 73)( 61, 74)
( 62, 75)( 63, 76)( 64, 77)( 65, 78)( 66, 79)( 67, 80)( 81, 94)( 82, 95)
( 83, 96)( 84, 97)( 85, 98)( 86, 99)( 87,100)( 88,101)( 89,102)( 90,103)
( 91,104)( 92,105)( 93,106)(107,133)(108,134)(109,135)(110,136)(111,137)
(112,138)(113,139)(114,140)(115,141)(116,142)(117,143)(118,144)(119,145)
(120,146)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)
(128,154)(129,155)(130,156)(131,157)(132,158)(159,198)(160,199)(161,200)
(162,201)(163,202)(164,203)(165,204)(166,205)(167,206)(168,207)(169,208)
(170,209)(171,210)(172,185)(173,186)(174,187)(175,188)(176,189)(177,190)
(178,191)(179,192)(180,193)(181,194)(182,195)(183,196)(184,197);
poly := sub<Sym(210)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s3*s2*s1*s2*s1*s3*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope