include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {418,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {418,2}*1672
if this polytope has a name.
Group : SmallGroup(1672,33)
Rank : 3
Schlafli Type : {418,2}
Number of vertices, edges, etc : 418, 418, 2
Order of s0s1s2 : 418
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {209,2}*836
11-fold quotients : {38,2}*152
19-fold quotients : {22,2}*88
22-fold quotients : {19,2}*76
38-fold quotients : {11,2}*44
209-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 19)( 3, 18)( 4, 17)( 5, 16)( 6, 15)( 7, 14)( 8, 13)( 9, 12)
( 10, 11)( 20,191)( 21,209)( 22,208)( 23,207)( 24,206)( 25,205)( 26,204)
( 27,203)( 28,202)( 29,201)( 30,200)( 31,199)( 32,198)( 33,197)( 34,196)
( 35,195)( 36,194)( 37,193)( 38,192)( 39,172)( 40,190)( 41,189)( 42,188)
( 43,187)( 44,186)( 45,185)( 46,184)( 47,183)( 48,182)( 49,181)( 50,180)
( 51,179)( 52,178)( 53,177)( 54,176)( 55,175)( 56,174)( 57,173)( 58,153)
( 59,171)( 60,170)( 61,169)( 62,168)( 63,167)( 64,166)( 65,165)( 66,164)
( 67,163)( 68,162)( 69,161)( 70,160)( 71,159)( 72,158)( 73,157)( 74,156)
( 75,155)( 76,154)( 77,134)( 78,152)( 79,151)( 80,150)( 81,149)( 82,148)
( 83,147)( 84,146)( 85,145)( 86,144)( 87,143)( 88,142)( 89,141)( 90,140)
( 91,139)( 92,138)( 93,137)( 94,136)( 95,135)( 96,115)( 97,133)( 98,132)
( 99,131)(100,130)(101,129)(102,128)(103,127)(104,126)(105,125)(106,124)
(107,123)(108,122)(109,121)(110,120)(111,119)(112,118)(113,117)(114,116)
(211,228)(212,227)(213,226)(214,225)(215,224)(216,223)(217,222)(218,221)
(219,220)(229,400)(230,418)(231,417)(232,416)(233,415)(234,414)(235,413)
(236,412)(237,411)(238,410)(239,409)(240,408)(241,407)(242,406)(243,405)
(244,404)(245,403)(246,402)(247,401)(248,381)(249,399)(250,398)(251,397)
(252,396)(253,395)(254,394)(255,393)(256,392)(257,391)(258,390)(259,389)
(260,388)(261,387)(262,386)(263,385)(264,384)(265,383)(266,382)(267,362)
(268,380)(269,379)(270,378)(271,377)(272,376)(273,375)(274,374)(275,373)
(276,372)(277,371)(278,370)(279,369)(280,368)(281,367)(282,366)(283,365)
(284,364)(285,363)(286,343)(287,361)(288,360)(289,359)(290,358)(291,357)
(292,356)(293,355)(294,354)(295,353)(296,352)(297,351)(298,350)(299,349)
(300,348)(301,347)(302,346)(303,345)(304,344)(305,324)(306,342)(307,341)
(308,340)(309,339)(310,338)(311,337)(312,336)(313,335)(314,334)(315,333)
(316,332)(317,331)(318,330)(319,329)(320,328)(321,327)(322,326)(323,325);;
s1 := ( 1,230)( 2,229)( 3,247)( 4,246)( 5,245)( 6,244)( 7,243)( 8,242)
( 9,241)( 10,240)( 11,239)( 12,238)( 13,237)( 14,236)( 15,235)( 16,234)
( 17,233)( 18,232)( 19,231)( 20,211)( 21,210)( 22,228)( 23,227)( 24,226)
( 25,225)( 26,224)( 27,223)( 28,222)( 29,221)( 30,220)( 31,219)( 32,218)
( 33,217)( 34,216)( 35,215)( 36,214)( 37,213)( 38,212)( 39,401)( 40,400)
( 41,418)( 42,417)( 43,416)( 44,415)( 45,414)( 46,413)( 47,412)( 48,411)
( 49,410)( 50,409)( 51,408)( 52,407)( 53,406)( 54,405)( 55,404)( 56,403)
( 57,402)( 58,382)( 59,381)( 60,399)( 61,398)( 62,397)( 63,396)( 64,395)
( 65,394)( 66,393)( 67,392)( 68,391)( 69,390)( 70,389)( 71,388)( 72,387)
( 73,386)( 74,385)( 75,384)( 76,383)( 77,363)( 78,362)( 79,380)( 80,379)
( 81,378)( 82,377)( 83,376)( 84,375)( 85,374)( 86,373)( 87,372)( 88,371)
( 89,370)( 90,369)( 91,368)( 92,367)( 93,366)( 94,365)( 95,364)( 96,344)
( 97,343)( 98,361)( 99,360)(100,359)(101,358)(102,357)(103,356)(104,355)
(105,354)(106,353)(107,352)(108,351)(109,350)(110,349)(111,348)(112,347)
(113,346)(114,345)(115,325)(116,324)(117,342)(118,341)(119,340)(120,339)
(121,338)(122,337)(123,336)(124,335)(125,334)(126,333)(127,332)(128,331)
(129,330)(130,329)(131,328)(132,327)(133,326)(134,306)(135,305)(136,323)
(137,322)(138,321)(139,320)(140,319)(141,318)(142,317)(143,316)(144,315)
(145,314)(146,313)(147,312)(148,311)(149,310)(150,309)(151,308)(152,307)
(153,287)(154,286)(155,304)(156,303)(157,302)(158,301)(159,300)(160,299)
(161,298)(162,297)(163,296)(164,295)(165,294)(166,293)(167,292)(168,291)
(169,290)(170,289)(171,288)(172,268)(173,267)(174,285)(175,284)(176,283)
(177,282)(178,281)(179,280)(180,279)(181,278)(182,277)(183,276)(184,275)
(185,274)(186,273)(187,272)(188,271)(189,270)(190,269)(191,249)(192,248)
(193,266)(194,265)(195,264)(196,263)(197,262)(198,261)(199,260)(200,259)
(201,258)(202,257)(203,256)(204,255)(205,254)(206,253)(207,252)(208,251)
(209,250);;
s2 := (419,420);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(420)!( 2, 19)( 3, 18)( 4, 17)( 5, 16)( 6, 15)( 7, 14)( 8, 13)
( 9, 12)( 10, 11)( 20,191)( 21,209)( 22,208)( 23,207)( 24,206)( 25,205)
( 26,204)( 27,203)( 28,202)( 29,201)( 30,200)( 31,199)( 32,198)( 33,197)
( 34,196)( 35,195)( 36,194)( 37,193)( 38,192)( 39,172)( 40,190)( 41,189)
( 42,188)( 43,187)( 44,186)( 45,185)( 46,184)( 47,183)( 48,182)( 49,181)
( 50,180)( 51,179)( 52,178)( 53,177)( 54,176)( 55,175)( 56,174)( 57,173)
( 58,153)( 59,171)( 60,170)( 61,169)( 62,168)( 63,167)( 64,166)( 65,165)
( 66,164)( 67,163)( 68,162)( 69,161)( 70,160)( 71,159)( 72,158)( 73,157)
( 74,156)( 75,155)( 76,154)( 77,134)( 78,152)( 79,151)( 80,150)( 81,149)
( 82,148)( 83,147)( 84,146)( 85,145)( 86,144)( 87,143)( 88,142)( 89,141)
( 90,140)( 91,139)( 92,138)( 93,137)( 94,136)( 95,135)( 96,115)( 97,133)
( 98,132)( 99,131)(100,130)(101,129)(102,128)(103,127)(104,126)(105,125)
(106,124)(107,123)(108,122)(109,121)(110,120)(111,119)(112,118)(113,117)
(114,116)(211,228)(212,227)(213,226)(214,225)(215,224)(216,223)(217,222)
(218,221)(219,220)(229,400)(230,418)(231,417)(232,416)(233,415)(234,414)
(235,413)(236,412)(237,411)(238,410)(239,409)(240,408)(241,407)(242,406)
(243,405)(244,404)(245,403)(246,402)(247,401)(248,381)(249,399)(250,398)
(251,397)(252,396)(253,395)(254,394)(255,393)(256,392)(257,391)(258,390)
(259,389)(260,388)(261,387)(262,386)(263,385)(264,384)(265,383)(266,382)
(267,362)(268,380)(269,379)(270,378)(271,377)(272,376)(273,375)(274,374)
(275,373)(276,372)(277,371)(278,370)(279,369)(280,368)(281,367)(282,366)
(283,365)(284,364)(285,363)(286,343)(287,361)(288,360)(289,359)(290,358)
(291,357)(292,356)(293,355)(294,354)(295,353)(296,352)(297,351)(298,350)
(299,349)(300,348)(301,347)(302,346)(303,345)(304,344)(305,324)(306,342)
(307,341)(308,340)(309,339)(310,338)(311,337)(312,336)(313,335)(314,334)
(315,333)(316,332)(317,331)(318,330)(319,329)(320,328)(321,327)(322,326)
(323,325);
s1 := Sym(420)!( 1,230)( 2,229)( 3,247)( 4,246)( 5,245)( 6,244)( 7,243)
( 8,242)( 9,241)( 10,240)( 11,239)( 12,238)( 13,237)( 14,236)( 15,235)
( 16,234)( 17,233)( 18,232)( 19,231)( 20,211)( 21,210)( 22,228)( 23,227)
( 24,226)( 25,225)( 26,224)( 27,223)( 28,222)( 29,221)( 30,220)( 31,219)
( 32,218)( 33,217)( 34,216)( 35,215)( 36,214)( 37,213)( 38,212)( 39,401)
( 40,400)( 41,418)( 42,417)( 43,416)( 44,415)( 45,414)( 46,413)( 47,412)
( 48,411)( 49,410)( 50,409)( 51,408)( 52,407)( 53,406)( 54,405)( 55,404)
( 56,403)( 57,402)( 58,382)( 59,381)( 60,399)( 61,398)( 62,397)( 63,396)
( 64,395)( 65,394)( 66,393)( 67,392)( 68,391)( 69,390)( 70,389)( 71,388)
( 72,387)( 73,386)( 74,385)( 75,384)( 76,383)( 77,363)( 78,362)( 79,380)
( 80,379)( 81,378)( 82,377)( 83,376)( 84,375)( 85,374)( 86,373)( 87,372)
( 88,371)( 89,370)( 90,369)( 91,368)( 92,367)( 93,366)( 94,365)( 95,364)
( 96,344)( 97,343)( 98,361)( 99,360)(100,359)(101,358)(102,357)(103,356)
(104,355)(105,354)(106,353)(107,352)(108,351)(109,350)(110,349)(111,348)
(112,347)(113,346)(114,345)(115,325)(116,324)(117,342)(118,341)(119,340)
(120,339)(121,338)(122,337)(123,336)(124,335)(125,334)(126,333)(127,332)
(128,331)(129,330)(130,329)(131,328)(132,327)(133,326)(134,306)(135,305)
(136,323)(137,322)(138,321)(139,320)(140,319)(141,318)(142,317)(143,316)
(144,315)(145,314)(146,313)(147,312)(148,311)(149,310)(150,309)(151,308)
(152,307)(153,287)(154,286)(155,304)(156,303)(157,302)(158,301)(159,300)
(160,299)(161,298)(162,297)(163,296)(164,295)(165,294)(166,293)(167,292)
(168,291)(169,290)(170,289)(171,288)(172,268)(173,267)(174,285)(175,284)
(176,283)(177,282)(178,281)(179,280)(180,279)(181,278)(182,277)(183,276)
(184,275)(185,274)(186,273)(187,272)(188,271)(189,270)(190,269)(191,249)
(192,248)(193,266)(194,265)(195,264)(196,263)(197,262)(198,261)(199,260)
(200,259)(201,258)(202,257)(203,256)(204,255)(205,254)(206,253)(207,252)
(208,251)(209,250);
s2 := Sym(420)!(419,420);
poly := sub<Sym(420)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope