include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,420}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,420}*1680
if this polytope has a name.
Group : SmallGroup(1680,912)
Rank : 3
Schlafli Type : {2,420}
Number of vertices, edges, etc : 2, 420, 420
Order of s0s1s2 : 420
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,210}*840
3-fold quotients : {2,140}*560
4-fold quotients : {2,105}*420
5-fold quotients : {2,84}*336
6-fold quotients : {2,70}*280
7-fold quotients : {2,60}*240
10-fold quotients : {2,42}*168
12-fold quotients : {2,35}*140
14-fold quotients : {2,30}*120
15-fold quotients : {2,28}*112
20-fold quotients : {2,21}*84
21-fold quotients : {2,20}*80
28-fold quotients : {2,15}*60
30-fold quotients : {2,14}*56
35-fold quotients : {2,12}*48
42-fold quotients : {2,10}*40
60-fold quotients : {2,7}*28
70-fold quotients : {2,6}*24
84-fold quotients : {2,5}*20
105-fold quotients : {2,4}*16
140-fold quotients : {2,3}*12
210-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 9)( 5, 8)( 6, 7)( 10, 31)( 11, 37)( 12, 36)( 13, 35)( 14, 34)
( 15, 33)( 16, 32)( 17, 24)( 18, 30)( 19, 29)( 20, 28)( 21, 27)( 22, 26)
( 23, 25)( 38, 73)( 39, 79)( 40, 78)( 41, 77)( 42, 76)( 43, 75)( 44, 74)
( 45,101)( 46,107)( 47,106)( 48,105)( 49,104)( 50,103)( 51,102)( 52, 94)
( 53,100)( 54, 99)( 55, 98)( 56, 97)( 57, 96)( 58, 95)( 59, 87)( 60, 93)
( 61, 92)( 62, 91)( 63, 90)( 64, 89)( 65, 88)( 66, 80)( 67, 86)( 68, 85)
( 69, 84)( 70, 83)( 71, 82)( 72, 81)(109,114)(110,113)(111,112)(115,136)
(116,142)(117,141)(118,140)(119,139)(120,138)(121,137)(122,129)(123,135)
(124,134)(125,133)(126,132)(127,131)(128,130)(143,178)(144,184)(145,183)
(146,182)(147,181)(148,180)(149,179)(150,206)(151,212)(152,211)(153,210)
(154,209)(155,208)(156,207)(157,199)(158,205)(159,204)(160,203)(161,202)
(162,201)(163,200)(164,192)(165,198)(166,197)(167,196)(168,195)(169,194)
(170,193)(171,185)(172,191)(173,190)(174,189)(175,188)(176,187)(177,186)
(213,318)(214,324)(215,323)(216,322)(217,321)(218,320)(219,319)(220,346)
(221,352)(222,351)(223,350)(224,349)(225,348)(226,347)(227,339)(228,345)
(229,344)(230,343)(231,342)(232,341)(233,340)(234,332)(235,338)(236,337)
(237,336)(238,335)(239,334)(240,333)(241,325)(242,331)(243,330)(244,329)
(245,328)(246,327)(247,326)(248,388)(249,394)(250,393)(251,392)(252,391)
(253,390)(254,389)(255,416)(256,422)(257,421)(258,420)(259,419)(260,418)
(261,417)(262,409)(263,415)(264,414)(265,413)(266,412)(267,411)(268,410)
(269,402)(270,408)(271,407)(272,406)(273,405)(274,404)(275,403)(276,395)
(277,401)(278,400)(279,399)(280,398)(281,397)(282,396)(283,353)(284,359)
(285,358)(286,357)(287,356)(288,355)(289,354)(290,381)(291,387)(292,386)
(293,385)(294,384)(295,383)(296,382)(297,374)(298,380)(299,379)(300,378)
(301,377)(302,376)(303,375)(304,367)(305,373)(306,372)(307,371)(308,370)
(309,369)(310,368)(311,360)(312,366)(313,365)(314,364)(315,363)(316,362)
(317,361);;
s2 := ( 3,256)( 4,255)( 5,261)( 6,260)( 7,259)( 8,258)( 9,257)( 10,249)
( 11,248)( 12,254)( 13,253)( 14,252)( 15,251)( 16,250)( 17,277)( 18,276)
( 19,282)( 20,281)( 21,280)( 22,279)( 23,278)( 24,270)( 25,269)( 26,275)
( 27,274)( 28,273)( 29,272)( 30,271)( 31,263)( 32,262)( 33,268)( 34,267)
( 35,266)( 36,265)( 37,264)( 38,221)( 39,220)( 40,226)( 41,225)( 42,224)
( 43,223)( 44,222)( 45,214)( 46,213)( 47,219)( 48,218)( 49,217)( 50,216)
( 51,215)( 52,242)( 53,241)( 54,247)( 55,246)( 56,245)( 57,244)( 58,243)
( 59,235)( 60,234)( 61,240)( 62,239)( 63,238)( 64,237)( 65,236)( 66,228)
( 67,227)( 68,233)( 69,232)( 70,231)( 71,230)( 72,229)( 73,291)( 74,290)
( 75,296)( 76,295)( 77,294)( 78,293)( 79,292)( 80,284)( 81,283)( 82,289)
( 83,288)( 84,287)( 85,286)( 86,285)( 87,312)( 88,311)( 89,317)( 90,316)
( 91,315)( 92,314)( 93,313)( 94,305)( 95,304)( 96,310)( 97,309)( 98,308)
( 99,307)(100,306)(101,298)(102,297)(103,303)(104,302)(105,301)(106,300)
(107,299)(108,361)(109,360)(110,366)(111,365)(112,364)(113,363)(114,362)
(115,354)(116,353)(117,359)(118,358)(119,357)(120,356)(121,355)(122,382)
(123,381)(124,387)(125,386)(126,385)(127,384)(128,383)(129,375)(130,374)
(131,380)(132,379)(133,378)(134,377)(135,376)(136,368)(137,367)(138,373)
(139,372)(140,371)(141,370)(142,369)(143,326)(144,325)(145,331)(146,330)
(147,329)(148,328)(149,327)(150,319)(151,318)(152,324)(153,323)(154,322)
(155,321)(156,320)(157,347)(158,346)(159,352)(160,351)(161,350)(162,349)
(163,348)(164,340)(165,339)(166,345)(167,344)(168,343)(169,342)(170,341)
(171,333)(172,332)(173,338)(174,337)(175,336)(176,335)(177,334)(178,396)
(179,395)(180,401)(181,400)(182,399)(183,398)(184,397)(185,389)(186,388)
(187,394)(188,393)(189,392)(190,391)(191,390)(192,417)(193,416)(194,422)
(195,421)(196,420)(197,419)(198,418)(199,410)(200,409)(201,415)(202,414)
(203,413)(204,412)(205,411)(206,403)(207,402)(208,408)(209,407)(210,406)
(211,405)(212,404);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(422)!(1,2);
s1 := Sym(422)!( 4, 9)( 5, 8)( 6, 7)( 10, 31)( 11, 37)( 12, 36)( 13, 35)
( 14, 34)( 15, 33)( 16, 32)( 17, 24)( 18, 30)( 19, 29)( 20, 28)( 21, 27)
( 22, 26)( 23, 25)( 38, 73)( 39, 79)( 40, 78)( 41, 77)( 42, 76)( 43, 75)
( 44, 74)( 45,101)( 46,107)( 47,106)( 48,105)( 49,104)( 50,103)( 51,102)
( 52, 94)( 53,100)( 54, 99)( 55, 98)( 56, 97)( 57, 96)( 58, 95)( 59, 87)
( 60, 93)( 61, 92)( 62, 91)( 63, 90)( 64, 89)( 65, 88)( 66, 80)( 67, 86)
( 68, 85)( 69, 84)( 70, 83)( 71, 82)( 72, 81)(109,114)(110,113)(111,112)
(115,136)(116,142)(117,141)(118,140)(119,139)(120,138)(121,137)(122,129)
(123,135)(124,134)(125,133)(126,132)(127,131)(128,130)(143,178)(144,184)
(145,183)(146,182)(147,181)(148,180)(149,179)(150,206)(151,212)(152,211)
(153,210)(154,209)(155,208)(156,207)(157,199)(158,205)(159,204)(160,203)
(161,202)(162,201)(163,200)(164,192)(165,198)(166,197)(167,196)(168,195)
(169,194)(170,193)(171,185)(172,191)(173,190)(174,189)(175,188)(176,187)
(177,186)(213,318)(214,324)(215,323)(216,322)(217,321)(218,320)(219,319)
(220,346)(221,352)(222,351)(223,350)(224,349)(225,348)(226,347)(227,339)
(228,345)(229,344)(230,343)(231,342)(232,341)(233,340)(234,332)(235,338)
(236,337)(237,336)(238,335)(239,334)(240,333)(241,325)(242,331)(243,330)
(244,329)(245,328)(246,327)(247,326)(248,388)(249,394)(250,393)(251,392)
(252,391)(253,390)(254,389)(255,416)(256,422)(257,421)(258,420)(259,419)
(260,418)(261,417)(262,409)(263,415)(264,414)(265,413)(266,412)(267,411)
(268,410)(269,402)(270,408)(271,407)(272,406)(273,405)(274,404)(275,403)
(276,395)(277,401)(278,400)(279,399)(280,398)(281,397)(282,396)(283,353)
(284,359)(285,358)(286,357)(287,356)(288,355)(289,354)(290,381)(291,387)
(292,386)(293,385)(294,384)(295,383)(296,382)(297,374)(298,380)(299,379)
(300,378)(301,377)(302,376)(303,375)(304,367)(305,373)(306,372)(307,371)
(308,370)(309,369)(310,368)(311,360)(312,366)(313,365)(314,364)(315,363)
(316,362)(317,361);
s2 := Sym(422)!( 3,256)( 4,255)( 5,261)( 6,260)( 7,259)( 8,258)( 9,257)
( 10,249)( 11,248)( 12,254)( 13,253)( 14,252)( 15,251)( 16,250)( 17,277)
( 18,276)( 19,282)( 20,281)( 21,280)( 22,279)( 23,278)( 24,270)( 25,269)
( 26,275)( 27,274)( 28,273)( 29,272)( 30,271)( 31,263)( 32,262)( 33,268)
( 34,267)( 35,266)( 36,265)( 37,264)( 38,221)( 39,220)( 40,226)( 41,225)
( 42,224)( 43,223)( 44,222)( 45,214)( 46,213)( 47,219)( 48,218)( 49,217)
( 50,216)( 51,215)( 52,242)( 53,241)( 54,247)( 55,246)( 56,245)( 57,244)
( 58,243)( 59,235)( 60,234)( 61,240)( 62,239)( 63,238)( 64,237)( 65,236)
( 66,228)( 67,227)( 68,233)( 69,232)( 70,231)( 71,230)( 72,229)( 73,291)
( 74,290)( 75,296)( 76,295)( 77,294)( 78,293)( 79,292)( 80,284)( 81,283)
( 82,289)( 83,288)( 84,287)( 85,286)( 86,285)( 87,312)( 88,311)( 89,317)
( 90,316)( 91,315)( 92,314)( 93,313)( 94,305)( 95,304)( 96,310)( 97,309)
( 98,308)( 99,307)(100,306)(101,298)(102,297)(103,303)(104,302)(105,301)
(106,300)(107,299)(108,361)(109,360)(110,366)(111,365)(112,364)(113,363)
(114,362)(115,354)(116,353)(117,359)(118,358)(119,357)(120,356)(121,355)
(122,382)(123,381)(124,387)(125,386)(126,385)(127,384)(128,383)(129,375)
(130,374)(131,380)(132,379)(133,378)(134,377)(135,376)(136,368)(137,367)
(138,373)(139,372)(140,371)(141,370)(142,369)(143,326)(144,325)(145,331)
(146,330)(147,329)(148,328)(149,327)(150,319)(151,318)(152,324)(153,323)
(154,322)(155,321)(156,320)(157,347)(158,346)(159,352)(160,351)(161,350)
(162,349)(163,348)(164,340)(165,339)(166,345)(167,344)(168,343)(169,342)
(170,341)(171,333)(172,332)(173,338)(174,337)(175,336)(176,335)(177,334)
(178,396)(179,395)(180,401)(181,400)(182,399)(183,398)(184,397)(185,389)
(186,388)(187,394)(188,393)(189,392)(190,391)(191,390)(192,417)(193,416)
(194,422)(195,421)(196,420)(197,419)(198,418)(199,410)(200,409)(201,415)
(202,414)(203,413)(204,412)(205,411)(206,403)(207,402)(208,408)(209,407)
(210,406)(211,405)(212,404);
poly := sub<Sym(422)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope