Polytope of Type {2,426}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,426}*1704
if this polytope has a name.
Group : SmallGroup(1704,38)
Rank : 3
Schlafli Type : {2,426}
Number of vertices, edges, etc : 2, 426, 426
Order of s0s1s2 : 426
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,213}*852
   3-fold quotients : {2,142}*568
   6-fold quotients : {2,71}*284
   71-fold quotients : {2,6}*24
   142-fold quotients : {2,3}*12
   213-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 73)(  5, 72)(  6, 71)(  7, 70)(  8, 69)(  9, 68)( 10, 67)( 11, 66)
( 12, 65)( 13, 64)( 14, 63)( 15, 62)( 16, 61)( 17, 60)( 18, 59)( 19, 58)
( 20, 57)( 21, 56)( 22, 55)( 23, 54)( 24, 53)( 25, 52)( 26, 51)( 27, 50)
( 28, 49)( 29, 48)( 30, 47)( 31, 46)( 32, 45)( 33, 44)( 34, 43)( 35, 42)
( 36, 41)( 37, 40)( 38, 39)( 74,145)( 75,215)( 76,214)( 77,213)( 78,212)
( 79,211)( 80,210)( 81,209)( 82,208)( 83,207)( 84,206)( 85,205)( 86,204)
( 87,203)( 88,202)( 89,201)( 90,200)( 91,199)( 92,198)( 93,197)( 94,196)
( 95,195)( 96,194)( 97,193)( 98,192)( 99,191)(100,190)(101,189)(102,188)
(103,187)(104,186)(105,185)(106,184)(107,183)(108,182)(109,181)(110,180)
(111,179)(112,178)(113,177)(114,176)(115,175)(116,174)(117,173)(118,172)
(119,171)(120,170)(121,169)(122,168)(123,167)(124,166)(125,165)(126,164)
(127,163)(128,162)(129,161)(130,160)(131,159)(132,158)(133,157)(134,156)
(135,155)(136,154)(137,153)(138,152)(139,151)(140,150)(141,149)(142,148)
(143,147)(144,146)(217,286)(218,285)(219,284)(220,283)(221,282)(222,281)
(223,280)(224,279)(225,278)(226,277)(227,276)(228,275)(229,274)(230,273)
(231,272)(232,271)(233,270)(234,269)(235,268)(236,267)(237,266)(238,265)
(239,264)(240,263)(241,262)(242,261)(243,260)(244,259)(245,258)(246,257)
(247,256)(248,255)(249,254)(250,253)(251,252)(287,358)(288,428)(289,427)
(290,426)(291,425)(292,424)(293,423)(294,422)(295,421)(296,420)(297,419)
(298,418)(299,417)(300,416)(301,415)(302,414)(303,413)(304,412)(305,411)
(306,410)(307,409)(308,408)(309,407)(310,406)(311,405)(312,404)(313,403)
(314,402)(315,401)(316,400)(317,399)(318,398)(319,397)(320,396)(321,395)
(322,394)(323,393)(324,392)(325,391)(326,390)(327,389)(328,388)(329,387)
(330,386)(331,385)(332,384)(333,383)(334,382)(335,381)(336,380)(337,379)
(338,378)(339,377)(340,376)(341,375)(342,374)(343,373)(344,372)(345,371)
(346,370)(347,369)(348,368)(349,367)(350,366)(351,365)(352,364)(353,363)
(354,362)(355,361)(356,360)(357,359);;
s2 := (  3,288)(  4,287)(  5,357)(  6,356)(  7,355)(  8,354)(  9,353)( 10,352)
( 11,351)( 12,350)( 13,349)( 14,348)( 15,347)( 16,346)( 17,345)( 18,344)
( 19,343)( 20,342)( 21,341)( 22,340)( 23,339)( 24,338)( 25,337)( 26,336)
( 27,335)( 28,334)( 29,333)( 30,332)( 31,331)( 32,330)( 33,329)( 34,328)
( 35,327)( 36,326)( 37,325)( 38,324)( 39,323)( 40,322)( 41,321)( 42,320)
( 43,319)( 44,318)( 45,317)( 46,316)( 47,315)( 48,314)( 49,313)( 50,312)
( 51,311)( 52,310)( 53,309)( 54,308)( 55,307)( 56,306)( 57,305)( 58,304)
( 59,303)( 60,302)( 61,301)( 62,300)( 63,299)( 64,298)( 65,297)( 66,296)
( 67,295)( 68,294)( 69,293)( 70,292)( 71,291)( 72,290)( 73,289)( 74,217)
( 75,216)( 76,286)( 77,285)( 78,284)( 79,283)( 80,282)( 81,281)( 82,280)
( 83,279)( 84,278)( 85,277)( 86,276)( 87,275)( 88,274)( 89,273)( 90,272)
( 91,271)( 92,270)( 93,269)( 94,268)( 95,267)( 96,266)( 97,265)( 98,264)
( 99,263)(100,262)(101,261)(102,260)(103,259)(104,258)(105,257)(106,256)
(107,255)(108,254)(109,253)(110,252)(111,251)(112,250)(113,249)(114,248)
(115,247)(116,246)(117,245)(118,244)(119,243)(120,242)(121,241)(122,240)
(123,239)(124,238)(125,237)(126,236)(127,235)(128,234)(129,233)(130,232)
(131,231)(132,230)(133,229)(134,228)(135,227)(136,226)(137,225)(138,224)
(139,223)(140,222)(141,221)(142,220)(143,219)(144,218)(145,359)(146,358)
(147,428)(148,427)(149,426)(150,425)(151,424)(152,423)(153,422)(154,421)
(155,420)(156,419)(157,418)(158,417)(159,416)(160,415)(161,414)(162,413)
(163,412)(164,411)(165,410)(166,409)(167,408)(168,407)(169,406)(170,405)
(171,404)(172,403)(173,402)(174,401)(175,400)(176,399)(177,398)(178,397)
(179,396)(180,395)(181,394)(182,393)(183,392)(184,391)(185,390)(186,389)
(187,388)(188,387)(189,386)(190,385)(191,384)(192,383)(193,382)(194,381)
(195,380)(196,379)(197,378)(198,377)(199,376)(200,375)(201,374)(202,373)
(203,372)(204,371)(205,370)(206,369)(207,368)(208,367)(209,366)(210,365)
(211,364)(212,363)(213,362)(214,361)(215,360);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(428)!(1,2);
s1 := Sym(428)!(  4, 73)(  5, 72)(  6, 71)(  7, 70)(  8, 69)(  9, 68)( 10, 67)
( 11, 66)( 12, 65)( 13, 64)( 14, 63)( 15, 62)( 16, 61)( 17, 60)( 18, 59)
( 19, 58)( 20, 57)( 21, 56)( 22, 55)( 23, 54)( 24, 53)( 25, 52)( 26, 51)
( 27, 50)( 28, 49)( 29, 48)( 30, 47)( 31, 46)( 32, 45)( 33, 44)( 34, 43)
( 35, 42)( 36, 41)( 37, 40)( 38, 39)( 74,145)( 75,215)( 76,214)( 77,213)
( 78,212)( 79,211)( 80,210)( 81,209)( 82,208)( 83,207)( 84,206)( 85,205)
( 86,204)( 87,203)( 88,202)( 89,201)( 90,200)( 91,199)( 92,198)( 93,197)
( 94,196)( 95,195)( 96,194)( 97,193)( 98,192)( 99,191)(100,190)(101,189)
(102,188)(103,187)(104,186)(105,185)(106,184)(107,183)(108,182)(109,181)
(110,180)(111,179)(112,178)(113,177)(114,176)(115,175)(116,174)(117,173)
(118,172)(119,171)(120,170)(121,169)(122,168)(123,167)(124,166)(125,165)
(126,164)(127,163)(128,162)(129,161)(130,160)(131,159)(132,158)(133,157)
(134,156)(135,155)(136,154)(137,153)(138,152)(139,151)(140,150)(141,149)
(142,148)(143,147)(144,146)(217,286)(218,285)(219,284)(220,283)(221,282)
(222,281)(223,280)(224,279)(225,278)(226,277)(227,276)(228,275)(229,274)
(230,273)(231,272)(232,271)(233,270)(234,269)(235,268)(236,267)(237,266)
(238,265)(239,264)(240,263)(241,262)(242,261)(243,260)(244,259)(245,258)
(246,257)(247,256)(248,255)(249,254)(250,253)(251,252)(287,358)(288,428)
(289,427)(290,426)(291,425)(292,424)(293,423)(294,422)(295,421)(296,420)
(297,419)(298,418)(299,417)(300,416)(301,415)(302,414)(303,413)(304,412)
(305,411)(306,410)(307,409)(308,408)(309,407)(310,406)(311,405)(312,404)
(313,403)(314,402)(315,401)(316,400)(317,399)(318,398)(319,397)(320,396)
(321,395)(322,394)(323,393)(324,392)(325,391)(326,390)(327,389)(328,388)
(329,387)(330,386)(331,385)(332,384)(333,383)(334,382)(335,381)(336,380)
(337,379)(338,378)(339,377)(340,376)(341,375)(342,374)(343,373)(344,372)
(345,371)(346,370)(347,369)(348,368)(349,367)(350,366)(351,365)(352,364)
(353,363)(354,362)(355,361)(356,360)(357,359);
s2 := Sym(428)!(  3,288)(  4,287)(  5,357)(  6,356)(  7,355)(  8,354)(  9,353)
( 10,352)( 11,351)( 12,350)( 13,349)( 14,348)( 15,347)( 16,346)( 17,345)
( 18,344)( 19,343)( 20,342)( 21,341)( 22,340)( 23,339)( 24,338)( 25,337)
( 26,336)( 27,335)( 28,334)( 29,333)( 30,332)( 31,331)( 32,330)( 33,329)
( 34,328)( 35,327)( 36,326)( 37,325)( 38,324)( 39,323)( 40,322)( 41,321)
( 42,320)( 43,319)( 44,318)( 45,317)( 46,316)( 47,315)( 48,314)( 49,313)
( 50,312)( 51,311)( 52,310)( 53,309)( 54,308)( 55,307)( 56,306)( 57,305)
( 58,304)( 59,303)( 60,302)( 61,301)( 62,300)( 63,299)( 64,298)( 65,297)
( 66,296)( 67,295)( 68,294)( 69,293)( 70,292)( 71,291)( 72,290)( 73,289)
( 74,217)( 75,216)( 76,286)( 77,285)( 78,284)( 79,283)( 80,282)( 81,281)
( 82,280)( 83,279)( 84,278)( 85,277)( 86,276)( 87,275)( 88,274)( 89,273)
( 90,272)( 91,271)( 92,270)( 93,269)( 94,268)( 95,267)( 96,266)( 97,265)
( 98,264)( 99,263)(100,262)(101,261)(102,260)(103,259)(104,258)(105,257)
(106,256)(107,255)(108,254)(109,253)(110,252)(111,251)(112,250)(113,249)
(114,248)(115,247)(116,246)(117,245)(118,244)(119,243)(120,242)(121,241)
(122,240)(123,239)(124,238)(125,237)(126,236)(127,235)(128,234)(129,233)
(130,232)(131,231)(132,230)(133,229)(134,228)(135,227)(136,226)(137,225)
(138,224)(139,223)(140,222)(141,221)(142,220)(143,219)(144,218)(145,359)
(146,358)(147,428)(148,427)(149,426)(150,425)(151,424)(152,423)(153,422)
(154,421)(155,420)(156,419)(157,418)(158,417)(159,416)(160,415)(161,414)
(162,413)(163,412)(164,411)(165,410)(166,409)(167,408)(168,407)(169,406)
(170,405)(171,404)(172,403)(173,402)(174,401)(175,400)(176,399)(177,398)
(178,397)(179,396)(180,395)(181,394)(182,393)(183,392)(184,391)(185,390)
(186,389)(187,388)(188,387)(189,386)(190,385)(191,384)(192,383)(193,382)
(194,381)(195,380)(196,379)(197,378)(198,377)(199,376)(200,375)(201,374)
(202,373)(203,372)(204,371)(205,370)(206,369)(207,368)(208,367)(209,366)
(210,365)(211,364)(212,363)(213,362)(214,361)(215,360);
poly := sub<Sym(428)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope