include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {426,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {426,2}*1704
if this polytope has a name.
Group : SmallGroup(1704,38)
Rank : 3
Schlafli Type : {426,2}
Number of vertices, edges, etc : 426, 426, 2
Order of s0s1s2 : 426
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {213,2}*852
3-fold quotients : {142,2}*568
6-fold quotients : {71,2}*284
71-fold quotients : {6,2}*24
142-fold quotients : {3,2}*12
213-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 71)( 3, 70)( 4, 69)( 5, 68)( 6, 67)( 7, 66)( 8, 65)( 9, 64)
( 10, 63)( 11, 62)( 12, 61)( 13, 60)( 14, 59)( 15, 58)( 16, 57)( 17, 56)
( 18, 55)( 19, 54)( 20, 53)( 21, 52)( 22, 51)( 23, 50)( 24, 49)( 25, 48)
( 26, 47)( 27, 46)( 28, 45)( 29, 44)( 30, 43)( 31, 42)( 32, 41)( 33, 40)
( 34, 39)( 35, 38)( 36, 37)( 72,143)( 73,213)( 74,212)( 75,211)( 76,210)
( 77,209)( 78,208)( 79,207)( 80,206)( 81,205)( 82,204)( 83,203)( 84,202)
( 85,201)( 86,200)( 87,199)( 88,198)( 89,197)( 90,196)( 91,195)( 92,194)
( 93,193)( 94,192)( 95,191)( 96,190)( 97,189)( 98,188)( 99,187)(100,186)
(101,185)(102,184)(103,183)(104,182)(105,181)(106,180)(107,179)(108,178)
(109,177)(110,176)(111,175)(112,174)(113,173)(114,172)(115,171)(116,170)
(117,169)(118,168)(119,167)(120,166)(121,165)(122,164)(123,163)(124,162)
(125,161)(126,160)(127,159)(128,158)(129,157)(130,156)(131,155)(132,154)
(133,153)(134,152)(135,151)(136,150)(137,149)(138,148)(139,147)(140,146)
(141,145)(142,144)(215,284)(216,283)(217,282)(218,281)(219,280)(220,279)
(221,278)(222,277)(223,276)(224,275)(225,274)(226,273)(227,272)(228,271)
(229,270)(230,269)(231,268)(232,267)(233,266)(234,265)(235,264)(236,263)
(237,262)(238,261)(239,260)(240,259)(241,258)(242,257)(243,256)(244,255)
(245,254)(246,253)(247,252)(248,251)(249,250)(285,356)(286,426)(287,425)
(288,424)(289,423)(290,422)(291,421)(292,420)(293,419)(294,418)(295,417)
(296,416)(297,415)(298,414)(299,413)(300,412)(301,411)(302,410)(303,409)
(304,408)(305,407)(306,406)(307,405)(308,404)(309,403)(310,402)(311,401)
(312,400)(313,399)(314,398)(315,397)(316,396)(317,395)(318,394)(319,393)
(320,392)(321,391)(322,390)(323,389)(324,388)(325,387)(326,386)(327,385)
(328,384)(329,383)(330,382)(331,381)(332,380)(333,379)(334,378)(335,377)
(336,376)(337,375)(338,374)(339,373)(340,372)(341,371)(342,370)(343,369)
(344,368)(345,367)(346,366)(347,365)(348,364)(349,363)(350,362)(351,361)
(352,360)(353,359)(354,358)(355,357);;
s1 := ( 1,286)( 2,285)( 3,355)( 4,354)( 5,353)( 6,352)( 7,351)( 8,350)
( 9,349)( 10,348)( 11,347)( 12,346)( 13,345)( 14,344)( 15,343)( 16,342)
( 17,341)( 18,340)( 19,339)( 20,338)( 21,337)( 22,336)( 23,335)( 24,334)
( 25,333)( 26,332)( 27,331)( 28,330)( 29,329)( 30,328)( 31,327)( 32,326)
( 33,325)( 34,324)( 35,323)( 36,322)( 37,321)( 38,320)( 39,319)( 40,318)
( 41,317)( 42,316)( 43,315)( 44,314)( 45,313)( 46,312)( 47,311)( 48,310)
( 49,309)( 50,308)( 51,307)( 52,306)( 53,305)( 54,304)( 55,303)( 56,302)
( 57,301)( 58,300)( 59,299)( 60,298)( 61,297)( 62,296)( 63,295)( 64,294)
( 65,293)( 66,292)( 67,291)( 68,290)( 69,289)( 70,288)( 71,287)( 72,215)
( 73,214)( 74,284)( 75,283)( 76,282)( 77,281)( 78,280)( 79,279)( 80,278)
( 81,277)( 82,276)( 83,275)( 84,274)( 85,273)( 86,272)( 87,271)( 88,270)
( 89,269)( 90,268)( 91,267)( 92,266)( 93,265)( 94,264)( 95,263)( 96,262)
( 97,261)( 98,260)( 99,259)(100,258)(101,257)(102,256)(103,255)(104,254)
(105,253)(106,252)(107,251)(108,250)(109,249)(110,248)(111,247)(112,246)
(113,245)(114,244)(115,243)(116,242)(117,241)(118,240)(119,239)(120,238)
(121,237)(122,236)(123,235)(124,234)(125,233)(126,232)(127,231)(128,230)
(129,229)(130,228)(131,227)(132,226)(133,225)(134,224)(135,223)(136,222)
(137,221)(138,220)(139,219)(140,218)(141,217)(142,216)(143,357)(144,356)
(145,426)(146,425)(147,424)(148,423)(149,422)(150,421)(151,420)(152,419)
(153,418)(154,417)(155,416)(156,415)(157,414)(158,413)(159,412)(160,411)
(161,410)(162,409)(163,408)(164,407)(165,406)(166,405)(167,404)(168,403)
(169,402)(170,401)(171,400)(172,399)(173,398)(174,397)(175,396)(176,395)
(177,394)(178,393)(179,392)(180,391)(181,390)(182,389)(183,388)(184,387)
(185,386)(186,385)(187,384)(188,383)(189,382)(190,381)(191,380)(192,379)
(193,378)(194,377)(195,376)(196,375)(197,374)(198,373)(199,372)(200,371)
(201,370)(202,369)(203,368)(204,367)(205,366)(206,365)(207,364)(208,363)
(209,362)(210,361)(211,360)(212,359)(213,358);;
s2 := (427,428);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(428)!( 2, 71)( 3, 70)( 4, 69)( 5, 68)( 6, 67)( 7, 66)( 8, 65)
( 9, 64)( 10, 63)( 11, 62)( 12, 61)( 13, 60)( 14, 59)( 15, 58)( 16, 57)
( 17, 56)( 18, 55)( 19, 54)( 20, 53)( 21, 52)( 22, 51)( 23, 50)( 24, 49)
( 25, 48)( 26, 47)( 27, 46)( 28, 45)( 29, 44)( 30, 43)( 31, 42)( 32, 41)
( 33, 40)( 34, 39)( 35, 38)( 36, 37)( 72,143)( 73,213)( 74,212)( 75,211)
( 76,210)( 77,209)( 78,208)( 79,207)( 80,206)( 81,205)( 82,204)( 83,203)
( 84,202)( 85,201)( 86,200)( 87,199)( 88,198)( 89,197)( 90,196)( 91,195)
( 92,194)( 93,193)( 94,192)( 95,191)( 96,190)( 97,189)( 98,188)( 99,187)
(100,186)(101,185)(102,184)(103,183)(104,182)(105,181)(106,180)(107,179)
(108,178)(109,177)(110,176)(111,175)(112,174)(113,173)(114,172)(115,171)
(116,170)(117,169)(118,168)(119,167)(120,166)(121,165)(122,164)(123,163)
(124,162)(125,161)(126,160)(127,159)(128,158)(129,157)(130,156)(131,155)
(132,154)(133,153)(134,152)(135,151)(136,150)(137,149)(138,148)(139,147)
(140,146)(141,145)(142,144)(215,284)(216,283)(217,282)(218,281)(219,280)
(220,279)(221,278)(222,277)(223,276)(224,275)(225,274)(226,273)(227,272)
(228,271)(229,270)(230,269)(231,268)(232,267)(233,266)(234,265)(235,264)
(236,263)(237,262)(238,261)(239,260)(240,259)(241,258)(242,257)(243,256)
(244,255)(245,254)(246,253)(247,252)(248,251)(249,250)(285,356)(286,426)
(287,425)(288,424)(289,423)(290,422)(291,421)(292,420)(293,419)(294,418)
(295,417)(296,416)(297,415)(298,414)(299,413)(300,412)(301,411)(302,410)
(303,409)(304,408)(305,407)(306,406)(307,405)(308,404)(309,403)(310,402)
(311,401)(312,400)(313,399)(314,398)(315,397)(316,396)(317,395)(318,394)
(319,393)(320,392)(321,391)(322,390)(323,389)(324,388)(325,387)(326,386)
(327,385)(328,384)(329,383)(330,382)(331,381)(332,380)(333,379)(334,378)
(335,377)(336,376)(337,375)(338,374)(339,373)(340,372)(341,371)(342,370)
(343,369)(344,368)(345,367)(346,366)(347,365)(348,364)(349,363)(350,362)
(351,361)(352,360)(353,359)(354,358)(355,357);
s1 := Sym(428)!( 1,286)( 2,285)( 3,355)( 4,354)( 5,353)( 6,352)( 7,351)
( 8,350)( 9,349)( 10,348)( 11,347)( 12,346)( 13,345)( 14,344)( 15,343)
( 16,342)( 17,341)( 18,340)( 19,339)( 20,338)( 21,337)( 22,336)( 23,335)
( 24,334)( 25,333)( 26,332)( 27,331)( 28,330)( 29,329)( 30,328)( 31,327)
( 32,326)( 33,325)( 34,324)( 35,323)( 36,322)( 37,321)( 38,320)( 39,319)
( 40,318)( 41,317)( 42,316)( 43,315)( 44,314)( 45,313)( 46,312)( 47,311)
( 48,310)( 49,309)( 50,308)( 51,307)( 52,306)( 53,305)( 54,304)( 55,303)
( 56,302)( 57,301)( 58,300)( 59,299)( 60,298)( 61,297)( 62,296)( 63,295)
( 64,294)( 65,293)( 66,292)( 67,291)( 68,290)( 69,289)( 70,288)( 71,287)
( 72,215)( 73,214)( 74,284)( 75,283)( 76,282)( 77,281)( 78,280)( 79,279)
( 80,278)( 81,277)( 82,276)( 83,275)( 84,274)( 85,273)( 86,272)( 87,271)
( 88,270)( 89,269)( 90,268)( 91,267)( 92,266)( 93,265)( 94,264)( 95,263)
( 96,262)( 97,261)( 98,260)( 99,259)(100,258)(101,257)(102,256)(103,255)
(104,254)(105,253)(106,252)(107,251)(108,250)(109,249)(110,248)(111,247)
(112,246)(113,245)(114,244)(115,243)(116,242)(117,241)(118,240)(119,239)
(120,238)(121,237)(122,236)(123,235)(124,234)(125,233)(126,232)(127,231)
(128,230)(129,229)(130,228)(131,227)(132,226)(133,225)(134,224)(135,223)
(136,222)(137,221)(138,220)(139,219)(140,218)(141,217)(142,216)(143,357)
(144,356)(145,426)(146,425)(147,424)(148,423)(149,422)(150,421)(151,420)
(152,419)(153,418)(154,417)(155,416)(156,415)(157,414)(158,413)(159,412)
(160,411)(161,410)(162,409)(163,408)(164,407)(165,406)(166,405)(167,404)
(168,403)(169,402)(170,401)(171,400)(172,399)(173,398)(174,397)(175,396)
(176,395)(177,394)(178,393)(179,392)(180,391)(181,390)(182,389)(183,388)
(184,387)(185,386)(186,385)(187,384)(188,383)(189,382)(190,381)(191,380)
(192,379)(193,378)(194,377)(195,376)(196,375)(197,374)(198,373)(199,372)
(200,371)(201,370)(202,369)(203,368)(204,367)(205,366)(206,365)(207,364)
(208,363)(209,362)(210,361)(211,360)(212,359)(213,358);
s2 := Sym(428)!(427,428);
poly := sub<Sym(428)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope