include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,108,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,108,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,11398)
Rank : 5
Schlafli Type : {2,2,108,2}
Number of vertices, edges, etc : 2, 2, 108, 108, 2
Order of s0s1s2s3s4 : 108
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,54,2}*864
3-fold quotients : {2,2,36,2}*576
4-fold quotients : {2,2,27,2}*432
6-fold quotients : {2,2,18,2}*288
9-fold quotients : {2,2,12,2}*192
12-fold quotients : {2,2,9,2}*144
18-fold quotients : {2,2,6,2}*96
27-fold quotients : {2,2,4,2}*64
36-fold quotients : {2,2,3,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8, 12)( 9, 11)( 10, 13)( 14, 26)( 15, 28)( 16, 27)( 17, 23)
( 18, 25)( 19, 24)( 20, 30)( 21, 29)( 22, 31)( 33, 34)( 35, 39)( 36, 38)
( 37, 40)( 41, 53)( 42, 55)( 43, 54)( 44, 50)( 45, 52)( 46, 51)( 47, 57)
( 48, 56)( 49, 58)( 59, 86)( 60, 88)( 61, 87)( 62, 93)( 63, 92)( 64, 94)
( 65, 90)( 66, 89)( 67, 91)( 68,107)( 69,109)( 70,108)( 71,104)( 72,106)
( 73,105)( 74,111)( 75,110)( 76,112)( 77, 98)( 78,100)( 79, 99)( 80, 95)
( 81, 97)( 82, 96)( 83,102)( 84,101)( 85,103);;
s3 := ( 5, 68)( 6, 70)( 7, 69)( 8, 75)( 9, 74)( 10, 76)( 11, 72)( 12, 71)
( 13, 73)( 14, 59)( 15, 61)( 16, 60)( 17, 66)( 18, 65)( 19, 67)( 20, 63)
( 21, 62)( 22, 64)( 23, 80)( 24, 82)( 25, 81)( 26, 77)( 27, 79)( 28, 78)
( 29, 84)( 30, 83)( 31, 85)( 32, 95)( 33, 97)( 34, 96)( 35,102)( 36,101)
( 37,103)( 38, 99)( 39, 98)( 40,100)( 41, 86)( 42, 88)( 43, 87)( 44, 93)
( 45, 92)( 46, 94)( 47, 90)( 48, 89)( 49, 91)( 50,107)( 51,109)( 52,108)
( 53,104)( 54,106)( 55,105)( 56,111)( 57,110)( 58,112);;
s4 := (113,114);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(114)!(1,2);
s1 := Sym(114)!(3,4);
s2 := Sym(114)!( 6, 7)( 8, 12)( 9, 11)( 10, 13)( 14, 26)( 15, 28)( 16, 27)
( 17, 23)( 18, 25)( 19, 24)( 20, 30)( 21, 29)( 22, 31)( 33, 34)( 35, 39)
( 36, 38)( 37, 40)( 41, 53)( 42, 55)( 43, 54)( 44, 50)( 45, 52)( 46, 51)
( 47, 57)( 48, 56)( 49, 58)( 59, 86)( 60, 88)( 61, 87)( 62, 93)( 63, 92)
( 64, 94)( 65, 90)( 66, 89)( 67, 91)( 68,107)( 69,109)( 70,108)( 71,104)
( 72,106)( 73,105)( 74,111)( 75,110)( 76,112)( 77, 98)( 78,100)( 79, 99)
( 80, 95)( 81, 97)( 82, 96)( 83,102)( 84,101)( 85,103);
s3 := Sym(114)!( 5, 68)( 6, 70)( 7, 69)( 8, 75)( 9, 74)( 10, 76)( 11, 72)
( 12, 71)( 13, 73)( 14, 59)( 15, 61)( 16, 60)( 17, 66)( 18, 65)( 19, 67)
( 20, 63)( 21, 62)( 22, 64)( 23, 80)( 24, 82)( 25, 81)( 26, 77)( 27, 79)
( 28, 78)( 29, 84)( 30, 83)( 31, 85)( 32, 95)( 33, 97)( 34, 96)( 35,102)
( 36,101)( 37,103)( 38, 99)( 39, 98)( 40,100)( 41, 86)( 42, 88)( 43, 87)
( 44, 93)( 45, 92)( 46, 94)( 47, 90)( 48, 89)( 49, 91)( 50,107)( 51,109)
( 52,108)( 53,104)( 54,106)( 55,105)( 56,111)( 57,110)( 58,112);
s4 := Sym(114)!(113,114);
poly := sub<Sym(114)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope