include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,2,72}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,72}*1728
if this polytope has a name.
Group : SmallGroup(1728,15813)
Rank : 4
Schlafli Type : {6,2,72}
Number of vertices, edges, etc : 6, 6, 72, 72
Order of s0s1s2s3 : 72
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,72}*864, {6,2,36}*864
3-fold quotients : {2,2,72}*576, {6,2,24}*576
4-fold quotients : {3,2,36}*432, {6,2,18}*432
6-fold quotients : {2,2,36}*288, {3,2,24}*288, {6,2,12}*288
8-fold quotients : {3,2,18}*216, {6,2,9}*216
9-fold quotients : {2,2,24}*192, {6,2,8}*192
12-fold quotients : {2,2,18}*144, {3,2,12}*144, {6,2,6}*144
16-fold quotients : {3,2,9}*108
18-fold quotients : {3,2,8}*96, {2,2,12}*96, {6,2,4}*96
24-fold quotients : {2,2,9}*72, {3,2,6}*72, {6,2,3}*72
27-fold quotients : {2,2,8}*64
36-fold quotients : {3,2,4}*48, {2,2,6}*48, {6,2,2}*48
48-fold quotients : {3,2,3}*36
54-fold quotients : {2,2,4}*32
72-fold quotients : {2,2,3}*24, {3,2,2}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,14)(11,13)(12,15)(17,18)(19,23)(20,22)(21,24)(25,34)(26,36)
(27,35)(28,41)(29,40)(30,42)(31,38)(32,37)(33,39)(43,61)(44,63)(45,62)(46,68)
(47,67)(48,69)(49,65)(50,64)(51,66)(52,70)(53,72)(54,71)(55,77)(56,76)(57,78)
(58,74)(59,73)(60,75);;
s3 := ( 7,46)( 8,48)( 9,47)(10,43)(11,45)(12,44)(13,50)(14,49)(15,51)(16,55)
(17,57)(18,56)(19,52)(20,54)(21,53)(22,59)(23,58)(24,60)(25,73)(26,75)(27,74)
(28,70)(29,72)(30,71)(31,77)(32,76)(33,78)(34,64)(35,66)(36,65)(37,61)(38,63)
(39,62)(40,68)(41,67)(42,69);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(78)!(3,4)(5,6);
s1 := Sym(78)!(1,5)(2,3)(4,6);
s2 := Sym(78)!( 8, 9)(10,14)(11,13)(12,15)(17,18)(19,23)(20,22)(21,24)(25,34)
(26,36)(27,35)(28,41)(29,40)(30,42)(31,38)(32,37)(33,39)(43,61)(44,63)(45,62)
(46,68)(47,67)(48,69)(49,65)(50,64)(51,66)(52,70)(53,72)(54,71)(55,77)(56,76)
(57,78)(58,74)(59,73)(60,75);
s3 := Sym(78)!( 7,46)( 8,48)( 9,47)(10,43)(11,45)(12,44)(13,50)(14,49)(15,51)
(16,55)(17,57)(18,56)(19,52)(20,54)(21,53)(22,59)(23,58)(24,60)(25,73)(26,75)
(27,74)(28,70)(29,72)(30,71)(31,77)(32,76)(33,78)(34,64)(35,66)(36,65)(37,61)
(38,63)(39,62)(40,68)(41,67)(42,69);
poly := sub<Sym(78)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope