Polytope of Type {3,2,36}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,36}*432
if this polytope has a name.
Group : SmallGroup(432,291)
Rank : 4
Schlafli Type : {3,2,36}
Number of vertices, edges, etc : 3, 3, 36, 36
Order of s0s1s2s3 : 36
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,36,2} of size 864
   {3,2,36,4} of size 1728
   {3,2,36,4} of size 1728
   {3,2,36,4} of size 1728
Vertex Figure Of :
   {2,3,2,36} of size 864
   {3,3,2,36} of size 1728
   {4,3,2,36} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,18}*216
   3-fold quotients : {3,2,12}*144
   4-fold quotients : {3,2,9}*108
   6-fold quotients : {3,2,6}*72
   9-fold quotients : {3,2,4}*48
   12-fold quotients : {3,2,3}*36
   18-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,72}*864, {6,2,36}*864
   3-fold covers : {9,2,36}*1296, {3,6,36}*1296a, {3,2,108}*1296, {3,6,36}*1296b
   4-fold covers : {3,2,144}*1728, {12,2,36}*1728, {6,4,36}*1728, {6,2,72}*1728, {3,4,36}*1728
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 5, 6)( 7, 8)(10,13)(11,12)(14,15)(16,17)(18,21)(19,20)(22,23)(24,25)
(26,29)(27,28)(30,31)(32,33)(34,37)(35,36)(38,39);;
s3 := ( 4,10)( 5, 7)( 6,16)( 8,18)( 9,12)(11,14)(13,24)(15,26)(17,20)(19,22)
(21,32)(23,34)(25,28)(27,30)(29,38)(31,35)(33,36)(37,39);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(39)!(2,3);
s1 := Sym(39)!(1,2);
s2 := Sym(39)!( 5, 6)( 7, 8)(10,13)(11,12)(14,15)(16,17)(18,21)(19,20)(22,23)
(24,25)(26,29)(27,28)(30,31)(32,33)(34,37)(35,36)(38,39);
s3 := Sym(39)!( 4,10)( 5, 7)( 6,16)( 8,18)( 9,12)(11,14)(13,24)(15,26)(17,20)
(19,22)(21,32)(23,34)(25,28)(27,30)(29,38)(31,35)(33,36)(37,39);
poly := sub<Sym(39)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope