include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,30243)
Rank : 3
Schlafli Type : {12,6}
Number of vertices, edges, etc : 144, 432, 72
Order of s0s1s2 : 12
Order of s0s1s2s1 : 12
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,6}*864b
3-fold quotients : {12,6}*576b
4-fold quotients : {12,6}*432b, {12,6}*432d
6-fold quotients : {12,6}*288a
8-fold quotients : {6,6}*216b
9-fold quotients : {4,6}*192b
12-fold quotients : {12,6}*144a, {12,6}*144d
16-fold quotients : {6,6}*108
18-fold quotients : {4,6}*96
24-fold quotients : {6,6}*72a
36-fold quotients : {12,2}*48, {4,6}*48a, {4,3}*48, {4,6}*48b, {4,6}*48c
72-fold quotients : {4,3}*24, {2,6}*24, {6,2}*24
108-fold quotients : {4,2}*16
144-fold quotients : {2,3}*12, {3,2}*12
216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 4)( 5, 11)( 6, 12)( 7, 9)( 8, 10)( 13, 27)( 14, 28)
( 15, 25)( 16, 26)( 17, 35)( 18, 36)( 19, 33)( 20, 34)( 21, 31)( 22, 32)
( 23, 29)( 24, 30)( 37, 39)( 38, 40)( 41, 47)( 42, 48)( 43, 45)( 44, 46)
( 49, 63)( 50, 64)( 51, 61)( 52, 62)( 53, 71)( 54, 72)( 55, 69)( 56, 70)
( 57, 67)( 58, 68)( 59, 65)( 60, 66)( 73, 75)( 74, 76)( 77, 83)( 78, 84)
( 79, 81)( 80, 82)( 85, 99)( 86,100)( 87, 97)( 88, 98)( 89,107)( 90,108)
( 91,105)( 92,106)( 93,103)( 94,104)( 95,101)( 96,102)(109,111)(110,112)
(113,119)(114,120)(115,117)(116,118)(121,135)(122,136)(123,133)(124,134)
(125,143)(126,144)(127,141)(128,142)(129,139)(130,140)(131,137)(132,138)
(145,147)(146,148)(149,155)(150,156)(151,153)(152,154)(157,171)(158,172)
(159,169)(160,170)(161,179)(162,180)(163,177)(164,178)(165,175)(166,176)
(167,173)(168,174)(181,183)(182,184)(185,191)(186,192)(187,189)(188,190)
(193,207)(194,208)(195,205)(196,206)(197,215)(198,216)(199,213)(200,214)
(201,211)(202,212)(203,209)(204,210)(217,327)(218,328)(219,325)(220,326)
(221,335)(222,336)(223,333)(224,334)(225,331)(226,332)(227,329)(228,330)
(229,351)(230,352)(231,349)(232,350)(233,359)(234,360)(235,357)(236,358)
(237,355)(238,356)(239,353)(240,354)(241,339)(242,340)(243,337)(244,338)
(245,347)(246,348)(247,345)(248,346)(249,343)(250,344)(251,341)(252,342)
(253,363)(254,364)(255,361)(256,362)(257,371)(258,372)(259,369)(260,370)
(261,367)(262,368)(263,365)(264,366)(265,387)(266,388)(267,385)(268,386)
(269,395)(270,396)(271,393)(272,394)(273,391)(274,392)(275,389)(276,390)
(277,375)(278,376)(279,373)(280,374)(281,383)(282,384)(283,381)(284,382)
(285,379)(286,380)(287,377)(288,378)(289,399)(290,400)(291,397)(292,398)
(293,407)(294,408)(295,405)(296,406)(297,403)(298,404)(299,401)(300,402)
(301,423)(302,424)(303,421)(304,422)(305,431)(306,432)(307,429)(308,430)
(309,427)(310,428)(311,425)(312,426)(313,411)(314,412)(315,409)(316,410)
(317,419)(318,420)(319,417)(320,418)(321,415)(322,416)(323,413)(324,414);;
s1 := ( 1,229)( 2,230)( 3,232)( 4,231)( 5,233)( 6,234)( 7,236)( 8,235)
( 9,237)( 10,238)( 11,240)( 12,239)( 13,217)( 14,218)( 15,220)( 16,219)
( 17,221)( 18,222)( 19,224)( 20,223)( 21,225)( 22,226)( 23,228)( 24,227)
( 25,241)( 26,242)( 27,244)( 28,243)( 29,245)( 30,246)( 31,248)( 32,247)
( 33,249)( 34,250)( 35,252)( 36,251)( 37,301)( 38,302)( 39,304)( 40,303)
( 41,305)( 42,306)( 43,308)( 44,307)( 45,309)( 46,310)( 47,312)( 48,311)
( 49,289)( 50,290)( 51,292)( 52,291)( 53,293)( 54,294)( 55,296)( 56,295)
( 57,297)( 58,298)( 59,300)( 60,299)( 61,313)( 62,314)( 63,316)( 64,315)
( 65,317)( 66,318)( 67,320)( 68,319)( 69,321)( 70,322)( 71,324)( 72,323)
( 73,265)( 74,266)( 75,268)( 76,267)( 77,269)( 78,270)( 79,272)( 80,271)
( 81,273)( 82,274)( 83,276)( 84,275)( 85,253)( 86,254)( 87,256)( 88,255)
( 89,257)( 90,258)( 91,260)( 92,259)( 93,261)( 94,262)( 95,264)( 96,263)
( 97,277)( 98,278)( 99,280)(100,279)(101,281)(102,282)(103,284)(104,283)
(105,285)(106,286)(107,288)(108,287)(109,337)(110,338)(111,340)(112,339)
(113,341)(114,342)(115,344)(116,343)(117,345)(118,346)(119,348)(120,347)
(121,325)(122,326)(123,328)(124,327)(125,329)(126,330)(127,332)(128,331)
(129,333)(130,334)(131,336)(132,335)(133,349)(134,350)(135,352)(136,351)
(137,353)(138,354)(139,356)(140,355)(141,357)(142,358)(143,360)(144,359)
(145,409)(146,410)(147,412)(148,411)(149,413)(150,414)(151,416)(152,415)
(153,417)(154,418)(155,420)(156,419)(157,397)(158,398)(159,400)(160,399)
(161,401)(162,402)(163,404)(164,403)(165,405)(166,406)(167,408)(168,407)
(169,421)(170,422)(171,424)(172,423)(173,425)(174,426)(175,428)(176,427)
(177,429)(178,430)(179,432)(180,431)(181,373)(182,374)(183,376)(184,375)
(185,377)(186,378)(187,380)(188,379)(189,381)(190,382)(191,384)(192,383)
(193,361)(194,362)(195,364)(196,363)(197,365)(198,366)(199,368)(200,367)
(201,369)(202,370)(203,372)(204,371)(205,385)(206,386)(207,388)(208,387)
(209,389)(210,390)(211,392)(212,391)(213,393)(214,394)(215,396)(216,395);;
s2 := ( 1, 37)( 2, 40)( 3, 39)( 4, 38)( 5, 45)( 6, 48)( 7, 47)( 8, 46)
( 9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 53)( 14, 56)( 15, 55)( 16, 54)
( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 74, 76)( 77, 81)( 78, 84)( 79, 83)
( 80, 82)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,105)( 98,108)
( 99,107)(100,106)(102,104)(109,145)(110,148)(111,147)(112,146)(113,153)
(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)(120,150)(121,161)
(122,164)(123,163)(124,162)(125,157)(126,160)(127,159)(128,158)(129,165)
(130,168)(131,167)(132,166)(133,177)(134,180)(135,179)(136,178)(137,173)
(138,176)(139,175)(140,174)(141,169)(142,172)(143,171)(144,170)(182,184)
(185,189)(186,192)(187,191)(188,190)(193,197)(194,200)(195,199)(196,198)
(202,204)(205,213)(206,216)(207,215)(208,214)(210,212)(217,253)(218,256)
(219,255)(220,254)(221,261)(222,264)(223,263)(224,262)(225,257)(226,260)
(227,259)(228,258)(229,269)(230,272)(231,271)(232,270)(233,265)(234,268)
(235,267)(236,266)(237,273)(238,276)(239,275)(240,274)(241,285)(242,288)
(243,287)(244,286)(245,281)(246,284)(247,283)(248,282)(249,277)(250,280)
(251,279)(252,278)(290,292)(293,297)(294,300)(295,299)(296,298)(301,305)
(302,308)(303,307)(304,306)(310,312)(313,321)(314,324)(315,323)(316,322)
(318,320)(325,361)(326,364)(327,363)(328,362)(329,369)(330,372)(331,371)
(332,370)(333,365)(334,368)(335,367)(336,366)(337,377)(338,380)(339,379)
(340,378)(341,373)(342,376)(343,375)(344,374)(345,381)(346,384)(347,383)
(348,382)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)(355,391)
(356,390)(357,385)(358,388)(359,387)(360,386)(398,400)(401,405)(402,408)
(403,407)(404,406)(409,413)(410,416)(411,415)(412,414)(418,420)(421,429)
(422,432)(423,431)(424,430)(426,428);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(432)!( 1, 3)( 2, 4)( 5, 11)( 6, 12)( 7, 9)( 8, 10)( 13, 27)
( 14, 28)( 15, 25)( 16, 26)( 17, 35)( 18, 36)( 19, 33)( 20, 34)( 21, 31)
( 22, 32)( 23, 29)( 24, 30)( 37, 39)( 38, 40)( 41, 47)( 42, 48)( 43, 45)
( 44, 46)( 49, 63)( 50, 64)( 51, 61)( 52, 62)( 53, 71)( 54, 72)( 55, 69)
( 56, 70)( 57, 67)( 58, 68)( 59, 65)( 60, 66)( 73, 75)( 74, 76)( 77, 83)
( 78, 84)( 79, 81)( 80, 82)( 85, 99)( 86,100)( 87, 97)( 88, 98)( 89,107)
( 90,108)( 91,105)( 92,106)( 93,103)( 94,104)( 95,101)( 96,102)(109,111)
(110,112)(113,119)(114,120)(115,117)(116,118)(121,135)(122,136)(123,133)
(124,134)(125,143)(126,144)(127,141)(128,142)(129,139)(130,140)(131,137)
(132,138)(145,147)(146,148)(149,155)(150,156)(151,153)(152,154)(157,171)
(158,172)(159,169)(160,170)(161,179)(162,180)(163,177)(164,178)(165,175)
(166,176)(167,173)(168,174)(181,183)(182,184)(185,191)(186,192)(187,189)
(188,190)(193,207)(194,208)(195,205)(196,206)(197,215)(198,216)(199,213)
(200,214)(201,211)(202,212)(203,209)(204,210)(217,327)(218,328)(219,325)
(220,326)(221,335)(222,336)(223,333)(224,334)(225,331)(226,332)(227,329)
(228,330)(229,351)(230,352)(231,349)(232,350)(233,359)(234,360)(235,357)
(236,358)(237,355)(238,356)(239,353)(240,354)(241,339)(242,340)(243,337)
(244,338)(245,347)(246,348)(247,345)(248,346)(249,343)(250,344)(251,341)
(252,342)(253,363)(254,364)(255,361)(256,362)(257,371)(258,372)(259,369)
(260,370)(261,367)(262,368)(263,365)(264,366)(265,387)(266,388)(267,385)
(268,386)(269,395)(270,396)(271,393)(272,394)(273,391)(274,392)(275,389)
(276,390)(277,375)(278,376)(279,373)(280,374)(281,383)(282,384)(283,381)
(284,382)(285,379)(286,380)(287,377)(288,378)(289,399)(290,400)(291,397)
(292,398)(293,407)(294,408)(295,405)(296,406)(297,403)(298,404)(299,401)
(300,402)(301,423)(302,424)(303,421)(304,422)(305,431)(306,432)(307,429)
(308,430)(309,427)(310,428)(311,425)(312,426)(313,411)(314,412)(315,409)
(316,410)(317,419)(318,420)(319,417)(320,418)(321,415)(322,416)(323,413)
(324,414);
s1 := Sym(432)!( 1,229)( 2,230)( 3,232)( 4,231)( 5,233)( 6,234)( 7,236)
( 8,235)( 9,237)( 10,238)( 11,240)( 12,239)( 13,217)( 14,218)( 15,220)
( 16,219)( 17,221)( 18,222)( 19,224)( 20,223)( 21,225)( 22,226)( 23,228)
( 24,227)( 25,241)( 26,242)( 27,244)( 28,243)( 29,245)( 30,246)( 31,248)
( 32,247)( 33,249)( 34,250)( 35,252)( 36,251)( 37,301)( 38,302)( 39,304)
( 40,303)( 41,305)( 42,306)( 43,308)( 44,307)( 45,309)( 46,310)( 47,312)
( 48,311)( 49,289)( 50,290)( 51,292)( 52,291)( 53,293)( 54,294)( 55,296)
( 56,295)( 57,297)( 58,298)( 59,300)( 60,299)( 61,313)( 62,314)( 63,316)
( 64,315)( 65,317)( 66,318)( 67,320)( 68,319)( 69,321)( 70,322)( 71,324)
( 72,323)( 73,265)( 74,266)( 75,268)( 76,267)( 77,269)( 78,270)( 79,272)
( 80,271)( 81,273)( 82,274)( 83,276)( 84,275)( 85,253)( 86,254)( 87,256)
( 88,255)( 89,257)( 90,258)( 91,260)( 92,259)( 93,261)( 94,262)( 95,264)
( 96,263)( 97,277)( 98,278)( 99,280)(100,279)(101,281)(102,282)(103,284)
(104,283)(105,285)(106,286)(107,288)(108,287)(109,337)(110,338)(111,340)
(112,339)(113,341)(114,342)(115,344)(116,343)(117,345)(118,346)(119,348)
(120,347)(121,325)(122,326)(123,328)(124,327)(125,329)(126,330)(127,332)
(128,331)(129,333)(130,334)(131,336)(132,335)(133,349)(134,350)(135,352)
(136,351)(137,353)(138,354)(139,356)(140,355)(141,357)(142,358)(143,360)
(144,359)(145,409)(146,410)(147,412)(148,411)(149,413)(150,414)(151,416)
(152,415)(153,417)(154,418)(155,420)(156,419)(157,397)(158,398)(159,400)
(160,399)(161,401)(162,402)(163,404)(164,403)(165,405)(166,406)(167,408)
(168,407)(169,421)(170,422)(171,424)(172,423)(173,425)(174,426)(175,428)
(176,427)(177,429)(178,430)(179,432)(180,431)(181,373)(182,374)(183,376)
(184,375)(185,377)(186,378)(187,380)(188,379)(189,381)(190,382)(191,384)
(192,383)(193,361)(194,362)(195,364)(196,363)(197,365)(198,366)(199,368)
(200,367)(201,369)(202,370)(203,372)(204,371)(205,385)(206,386)(207,388)
(208,387)(209,389)(210,390)(211,392)(212,391)(213,393)(214,394)(215,396)
(216,395);
s2 := Sym(432)!( 1, 37)( 2, 40)( 3, 39)( 4, 38)( 5, 45)( 6, 48)( 7, 47)
( 8, 46)( 9, 41)( 10, 44)( 11, 43)( 12, 42)( 13, 53)( 14, 56)( 15, 55)
( 16, 54)( 17, 49)( 18, 52)( 19, 51)( 20, 50)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 69)( 26, 72)( 27, 71)( 28, 70)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 61)( 34, 64)( 35, 63)( 36, 62)( 74, 76)( 77, 81)( 78, 84)
( 79, 83)( 80, 82)( 85, 89)( 86, 92)( 87, 91)( 88, 90)( 94, 96)( 97,105)
( 98,108)( 99,107)(100,106)(102,104)(109,145)(110,148)(111,147)(112,146)
(113,153)(114,156)(115,155)(116,154)(117,149)(118,152)(119,151)(120,150)
(121,161)(122,164)(123,163)(124,162)(125,157)(126,160)(127,159)(128,158)
(129,165)(130,168)(131,167)(132,166)(133,177)(134,180)(135,179)(136,178)
(137,173)(138,176)(139,175)(140,174)(141,169)(142,172)(143,171)(144,170)
(182,184)(185,189)(186,192)(187,191)(188,190)(193,197)(194,200)(195,199)
(196,198)(202,204)(205,213)(206,216)(207,215)(208,214)(210,212)(217,253)
(218,256)(219,255)(220,254)(221,261)(222,264)(223,263)(224,262)(225,257)
(226,260)(227,259)(228,258)(229,269)(230,272)(231,271)(232,270)(233,265)
(234,268)(235,267)(236,266)(237,273)(238,276)(239,275)(240,274)(241,285)
(242,288)(243,287)(244,286)(245,281)(246,284)(247,283)(248,282)(249,277)
(250,280)(251,279)(252,278)(290,292)(293,297)(294,300)(295,299)(296,298)
(301,305)(302,308)(303,307)(304,306)(310,312)(313,321)(314,324)(315,323)
(316,322)(318,320)(325,361)(326,364)(327,363)(328,362)(329,369)(330,372)
(331,371)(332,370)(333,365)(334,368)(335,367)(336,366)(337,377)(338,380)
(339,379)(340,378)(341,373)(342,376)(343,375)(344,374)(345,381)(346,384)
(347,383)(348,382)(349,393)(350,396)(351,395)(352,394)(353,389)(354,392)
(355,391)(356,390)(357,385)(358,388)(359,387)(360,386)(398,400)(401,405)
(402,408)(403,407)(404,406)(409,413)(410,416)(411,415)(412,414)(418,420)
(421,429)(422,432)(423,431)(424,430)(426,428);
poly := sub<Sym(432)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope