Polytope of Type {6,4,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,18}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 4
Schlafli Type : {6,4,18}
Number of vertices, edges, etc : 6, 24, 72, 36
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,4,9}*864
   3-fold quotients : {2,4,18}*576, {6,4,6}*576a
   4-fold quotients : {6,2,18}*432
   6-fold quotients : {2,4,9}*288, {2,4,18}*288b, {2,4,18}*288c, {6,4,3}*288
   8-fold quotients : {3,2,18}*216, {6,2,9}*216
   9-fold quotients : {2,4,6}*192
   12-fold quotients : {2,4,9}*144, {2,2,18}*144, {6,2,6}*144
   16-fold quotients : {3,2,9}*108
   18-fold quotients : {2,4,3}*96, {2,4,6}*96b, {2,4,6}*96c
   24-fold quotients : {2,2,9}*72, {3,2,6}*72, {6,2,3}*72
   36-fold quotients : {2,4,3}*48, {2,2,6}*48, {6,2,2}*48
   48-fold quotients : {3,2,3}*36
   72-fold quotients : {2,2,3}*24, {3,2,2}*24
   108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216)
(229,241)(230,242)(231,243)(232,244)(233,245)(234,246)(235,247)(236,248)
(237,249)(238,250)(239,251)(240,252)(265,277)(266,278)(267,279)(268,280)
(269,281)(270,282)(271,283)(272,284)(273,285)(274,286)(275,287)(276,288)
(301,313)(302,314)(303,315)(304,316)(305,317)(306,318)(307,319)(308,320)
(309,321)(310,322)(311,323)(312,324)(337,349)(338,350)(339,351)(340,352)
(341,353)(342,354)(343,355)(344,356)(345,357)(346,358)(347,359)(348,360)
(373,385)(374,386)(375,387)(376,388)(377,389)(378,390)(379,391)(380,392)
(381,393)(382,394)(383,395)(384,396)(409,421)(410,422)(411,423)(412,424)
(413,425)(414,426)(415,427)(416,428)(417,429)(418,430)(419,431)(420,432);;
s1 := (  1,231)(  2,232)(  3,229)(  4,230)(  5,235)(  6,236)(  7,233)(  8,234)
(  9,239)( 10,240)( 11,237)( 12,238)( 13,219)( 14,220)( 15,217)( 16,218)
( 17,223)( 18,224)( 19,221)( 20,222)( 21,227)( 22,228)( 23,225)( 24,226)
( 25,243)( 26,244)( 27,241)( 28,242)( 29,247)( 30,248)( 31,245)( 32,246)
( 33,251)( 34,252)( 35,249)( 36,250)( 37,267)( 38,268)( 39,265)( 40,266)
( 41,271)( 42,272)( 43,269)( 44,270)( 45,275)( 46,276)( 47,273)( 48,274)
( 49,255)( 50,256)( 51,253)( 52,254)( 53,259)( 54,260)( 55,257)( 56,258)
( 57,263)( 58,264)( 59,261)( 60,262)( 61,279)( 62,280)( 63,277)( 64,278)
( 65,283)( 66,284)( 67,281)( 68,282)( 69,287)( 70,288)( 71,285)( 72,286)
( 73,303)( 74,304)( 75,301)( 76,302)( 77,307)( 78,308)( 79,305)( 80,306)
( 81,311)( 82,312)( 83,309)( 84,310)( 85,291)( 86,292)( 87,289)( 88,290)
( 89,295)( 90,296)( 91,293)( 92,294)( 93,299)( 94,300)( 95,297)( 96,298)
( 97,315)( 98,316)( 99,313)(100,314)(101,319)(102,320)(103,317)(104,318)
(105,323)(106,324)(107,321)(108,322)(109,339)(110,340)(111,337)(112,338)
(113,343)(114,344)(115,341)(116,342)(117,347)(118,348)(119,345)(120,346)
(121,327)(122,328)(123,325)(124,326)(125,331)(126,332)(127,329)(128,330)
(129,335)(130,336)(131,333)(132,334)(133,351)(134,352)(135,349)(136,350)
(137,355)(138,356)(139,353)(140,354)(141,359)(142,360)(143,357)(144,358)
(145,375)(146,376)(147,373)(148,374)(149,379)(150,380)(151,377)(152,378)
(153,383)(154,384)(155,381)(156,382)(157,363)(158,364)(159,361)(160,362)
(161,367)(162,368)(163,365)(164,366)(165,371)(166,372)(167,369)(168,370)
(169,387)(170,388)(171,385)(172,386)(173,391)(174,392)(175,389)(176,390)
(177,395)(178,396)(179,393)(180,394)(181,411)(182,412)(183,409)(184,410)
(185,415)(186,416)(187,413)(188,414)(189,419)(190,420)(191,417)(192,418)
(193,399)(194,400)(195,397)(196,398)(197,403)(198,404)(199,401)(200,402)
(201,407)(202,408)(203,405)(204,406)(205,423)(206,424)(207,421)(208,422)
(209,427)(210,428)(211,425)(212,426)(213,431)(214,432)(215,429)(216,430);;
s2 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 37, 81)
( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)( 45, 73)
( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,105)
( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)( 69, 97)
( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)(116,119)
(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)(138,142)
(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)(150,186)
(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)(158,202)
(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)(166,194)
(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)(174,210)
(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(219,220)(221,225)
(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)(236,239)
(243,244)(245,249)(246,250)(247,252)(248,251)(253,297)(254,298)(255,300)
(256,299)(257,293)(258,294)(259,296)(260,295)(261,289)(262,290)(263,292)
(264,291)(265,309)(266,310)(267,312)(268,311)(269,305)(270,306)(271,308)
(272,307)(273,301)(274,302)(275,304)(276,303)(277,321)(278,322)(279,324)
(280,323)(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)(287,316)
(288,315)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)(341,345)
(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)(356,359)
(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)(368,403)
(369,397)(370,398)(371,400)(372,399)(373,417)(374,418)(375,420)(376,419)
(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)(384,411)
(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)(392,427)
(393,421)(394,422)(395,424)(396,423);;
s3 := (  1,145)(  2,148)(  3,147)(  4,146)(  5,153)(  6,156)(  7,155)(  8,154)
(  9,149)( 10,152)( 11,151)( 12,150)( 13,157)( 14,160)( 15,159)( 16,158)
( 17,165)( 18,168)( 19,167)( 20,166)( 21,161)( 22,164)( 23,163)( 24,162)
( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)( 32,178)
( 33,173)( 34,176)( 35,175)( 36,174)( 37,109)( 38,112)( 39,111)( 40,110)
( 41,117)( 42,120)( 43,119)( 44,118)( 45,113)( 46,116)( 47,115)( 48,114)
( 49,121)( 50,124)( 51,123)( 52,122)( 53,129)( 54,132)( 55,131)( 56,130)
( 57,125)( 58,128)( 59,127)( 60,126)( 61,133)( 62,136)( 63,135)( 64,134)
( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)( 72,138)
( 73,189)( 74,192)( 75,191)( 76,190)( 77,185)( 78,188)( 79,187)( 80,186)
( 81,181)( 82,184)( 83,183)( 84,182)( 85,201)( 86,204)( 87,203)( 88,202)
( 89,197)( 90,200)( 91,199)( 92,198)( 93,193)( 94,196)( 95,195)( 96,194)
( 97,213)( 98,216)( 99,215)(100,214)(101,209)(102,212)(103,211)(104,210)
(105,205)(106,208)(107,207)(108,206)(217,361)(218,364)(219,363)(220,362)
(221,369)(222,372)(223,371)(224,370)(225,365)(226,368)(227,367)(228,366)
(229,373)(230,376)(231,375)(232,374)(233,381)(234,384)(235,383)(236,382)
(237,377)(238,380)(239,379)(240,378)(241,385)(242,388)(243,387)(244,386)
(245,393)(246,396)(247,395)(248,394)(249,389)(250,392)(251,391)(252,390)
(253,325)(254,328)(255,327)(256,326)(257,333)(258,336)(259,335)(260,334)
(261,329)(262,332)(263,331)(264,330)(265,337)(266,340)(267,339)(268,338)
(269,345)(270,348)(271,347)(272,346)(273,341)(274,344)(275,343)(276,342)
(277,349)(278,352)(279,351)(280,350)(281,357)(282,360)(283,359)(284,358)
(285,353)(286,356)(287,355)(288,354)(289,405)(290,408)(291,407)(292,406)
(293,401)(294,404)(295,403)(296,402)(297,397)(298,400)(299,399)(300,398)
(301,417)(302,420)(303,419)(304,418)(305,413)(306,416)(307,415)(308,414)
(309,409)(310,412)(311,411)(312,410)(313,429)(314,432)(315,431)(316,430)
(317,425)(318,428)(319,427)(320,426)(321,421)(322,424)(323,423)(324,422);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(432)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216)(229,241)(230,242)(231,243)(232,244)(233,245)(234,246)(235,247)
(236,248)(237,249)(238,250)(239,251)(240,252)(265,277)(266,278)(267,279)
(268,280)(269,281)(270,282)(271,283)(272,284)(273,285)(274,286)(275,287)
(276,288)(301,313)(302,314)(303,315)(304,316)(305,317)(306,318)(307,319)
(308,320)(309,321)(310,322)(311,323)(312,324)(337,349)(338,350)(339,351)
(340,352)(341,353)(342,354)(343,355)(344,356)(345,357)(346,358)(347,359)
(348,360)(373,385)(374,386)(375,387)(376,388)(377,389)(378,390)(379,391)
(380,392)(381,393)(382,394)(383,395)(384,396)(409,421)(410,422)(411,423)
(412,424)(413,425)(414,426)(415,427)(416,428)(417,429)(418,430)(419,431)
(420,432);
s1 := Sym(432)!(  1,231)(  2,232)(  3,229)(  4,230)(  5,235)(  6,236)(  7,233)
(  8,234)(  9,239)( 10,240)( 11,237)( 12,238)( 13,219)( 14,220)( 15,217)
( 16,218)( 17,223)( 18,224)( 19,221)( 20,222)( 21,227)( 22,228)( 23,225)
( 24,226)( 25,243)( 26,244)( 27,241)( 28,242)( 29,247)( 30,248)( 31,245)
( 32,246)( 33,251)( 34,252)( 35,249)( 36,250)( 37,267)( 38,268)( 39,265)
( 40,266)( 41,271)( 42,272)( 43,269)( 44,270)( 45,275)( 46,276)( 47,273)
( 48,274)( 49,255)( 50,256)( 51,253)( 52,254)( 53,259)( 54,260)( 55,257)
( 56,258)( 57,263)( 58,264)( 59,261)( 60,262)( 61,279)( 62,280)( 63,277)
( 64,278)( 65,283)( 66,284)( 67,281)( 68,282)( 69,287)( 70,288)( 71,285)
( 72,286)( 73,303)( 74,304)( 75,301)( 76,302)( 77,307)( 78,308)( 79,305)
( 80,306)( 81,311)( 82,312)( 83,309)( 84,310)( 85,291)( 86,292)( 87,289)
( 88,290)( 89,295)( 90,296)( 91,293)( 92,294)( 93,299)( 94,300)( 95,297)
( 96,298)( 97,315)( 98,316)( 99,313)(100,314)(101,319)(102,320)(103,317)
(104,318)(105,323)(106,324)(107,321)(108,322)(109,339)(110,340)(111,337)
(112,338)(113,343)(114,344)(115,341)(116,342)(117,347)(118,348)(119,345)
(120,346)(121,327)(122,328)(123,325)(124,326)(125,331)(126,332)(127,329)
(128,330)(129,335)(130,336)(131,333)(132,334)(133,351)(134,352)(135,349)
(136,350)(137,355)(138,356)(139,353)(140,354)(141,359)(142,360)(143,357)
(144,358)(145,375)(146,376)(147,373)(148,374)(149,379)(150,380)(151,377)
(152,378)(153,383)(154,384)(155,381)(156,382)(157,363)(158,364)(159,361)
(160,362)(161,367)(162,368)(163,365)(164,366)(165,371)(166,372)(167,369)
(168,370)(169,387)(170,388)(171,385)(172,386)(173,391)(174,392)(175,389)
(176,390)(177,395)(178,396)(179,393)(180,394)(181,411)(182,412)(183,409)
(184,410)(185,415)(186,416)(187,413)(188,414)(189,419)(190,420)(191,417)
(192,418)(193,399)(194,400)(195,397)(196,398)(197,403)(198,404)(199,401)
(200,402)(201,407)(202,408)(203,405)(204,406)(205,423)(206,424)(207,421)
(208,422)(209,427)(210,428)(211,425)(212,426)(213,431)(214,432)(215,429)
(216,430);
s2 := Sym(432)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)
( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)
( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)
( 69, 97)( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)
(116,119)(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)
(138,142)(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)
(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)
(158,202)(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)
(166,194)(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)
(174,210)(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(219,220)
(221,225)(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)
(236,239)(243,244)(245,249)(246,250)(247,252)(248,251)(253,297)(254,298)
(255,300)(256,299)(257,293)(258,294)(259,296)(260,295)(261,289)(262,290)
(263,292)(264,291)(265,309)(266,310)(267,312)(268,311)(269,305)(270,306)
(271,308)(272,307)(273,301)(274,302)(275,304)(276,303)(277,321)(278,322)
(279,324)(280,323)(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)
(287,316)(288,315)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)
(341,345)(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)
(356,359)(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)
(368,403)(369,397)(370,398)(371,400)(372,399)(373,417)(374,418)(375,420)
(376,419)(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)
(384,411)(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)
(392,427)(393,421)(394,422)(395,424)(396,423);
s3 := Sym(432)!(  1,145)(  2,148)(  3,147)(  4,146)(  5,153)(  6,156)(  7,155)
(  8,154)(  9,149)( 10,152)( 11,151)( 12,150)( 13,157)( 14,160)( 15,159)
( 16,158)( 17,165)( 18,168)( 19,167)( 20,166)( 21,161)( 22,164)( 23,163)
( 24,162)( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)
( 32,178)( 33,173)( 34,176)( 35,175)( 36,174)( 37,109)( 38,112)( 39,111)
( 40,110)( 41,117)( 42,120)( 43,119)( 44,118)( 45,113)( 46,116)( 47,115)
( 48,114)( 49,121)( 50,124)( 51,123)( 52,122)( 53,129)( 54,132)( 55,131)
( 56,130)( 57,125)( 58,128)( 59,127)( 60,126)( 61,133)( 62,136)( 63,135)
( 64,134)( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)
( 72,138)( 73,189)( 74,192)( 75,191)( 76,190)( 77,185)( 78,188)( 79,187)
( 80,186)( 81,181)( 82,184)( 83,183)( 84,182)( 85,201)( 86,204)( 87,203)
( 88,202)( 89,197)( 90,200)( 91,199)( 92,198)( 93,193)( 94,196)( 95,195)
( 96,194)( 97,213)( 98,216)( 99,215)(100,214)(101,209)(102,212)(103,211)
(104,210)(105,205)(106,208)(107,207)(108,206)(217,361)(218,364)(219,363)
(220,362)(221,369)(222,372)(223,371)(224,370)(225,365)(226,368)(227,367)
(228,366)(229,373)(230,376)(231,375)(232,374)(233,381)(234,384)(235,383)
(236,382)(237,377)(238,380)(239,379)(240,378)(241,385)(242,388)(243,387)
(244,386)(245,393)(246,396)(247,395)(248,394)(249,389)(250,392)(251,391)
(252,390)(253,325)(254,328)(255,327)(256,326)(257,333)(258,336)(259,335)
(260,334)(261,329)(262,332)(263,331)(264,330)(265,337)(266,340)(267,339)
(268,338)(269,345)(270,348)(271,347)(272,346)(273,341)(274,344)(275,343)
(276,342)(277,349)(278,352)(279,351)(280,350)(281,357)(282,360)(283,359)
(284,358)(285,353)(286,356)(287,355)(288,354)(289,405)(290,408)(291,407)
(292,406)(293,401)(294,404)(295,403)(296,402)(297,397)(298,400)(299,399)
(300,398)(301,417)(302,420)(303,419)(304,418)(305,413)(306,416)(307,415)
(308,414)(309,409)(310,412)(311,411)(312,410)(313,429)(314,432)(315,431)
(316,430)(317,425)(318,428)(319,427)(320,426)(321,421)(322,424)(323,423)
(324,422);
poly := sub<Sym(432)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s3*s2*s1*s2*s3*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope