include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {18,4,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {18,4,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,46115)
Rank : 4
Schlafli Type : {18,4,6}
Number of vertices, edges, etc : 36, 72, 24, 6
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,4,6}*864
3-fold quotients : {18,4,2}*576, {6,4,6}*576b
4-fold quotients : {18,2,6}*432
6-fold quotients : {9,4,2}*288, {18,4,2}*288b, {18,4,2}*288c, {3,4,6}*288
8-fold quotients : {9,2,6}*216, {18,2,3}*216
9-fold quotients : {6,4,2}*192
12-fold quotients : {9,4,2}*144, {18,2,2}*144, {6,2,6}*144
16-fold quotients : {9,2,3}*108
18-fold quotients : {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
24-fold quotients : {9,2,2}*72, {3,2,6}*72, {6,2,3}*72
36-fold quotients : {3,4,2}*48, {2,2,6}*48, {6,2,2}*48
48-fold quotients : {3,2,3}*36
72-fold quotients : {2,2,3}*24, {3,2,2}*24
108-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 37, 81)
( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)( 45, 73)
( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)( 53, 89)
( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)( 61,105)
( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)( 69, 97)
( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)(116,119)
(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)(138,142)
(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)(150,186)
(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)(158,202)
(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)(166,194)
(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)(174,210)
(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(219,220)(221,225)
(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)(236,239)
(243,244)(245,249)(246,250)(247,252)(248,251)(253,297)(254,298)(255,300)
(256,299)(257,293)(258,294)(259,296)(260,295)(261,289)(262,290)(263,292)
(264,291)(265,309)(266,310)(267,312)(268,311)(269,305)(270,306)(271,308)
(272,307)(273,301)(274,302)(275,304)(276,303)(277,321)(278,322)(279,324)
(280,323)(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)(287,316)
(288,315)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)(341,345)
(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)(356,359)
(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)(368,403)
(369,397)(370,398)(371,400)(372,399)(373,417)(374,418)(375,420)(376,419)
(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)(384,411)
(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)(392,427)
(393,421)(394,422)(395,424)(396,423);;
s1 := ( 1,253)( 2,256)( 3,255)( 4,254)( 5,261)( 6,264)( 7,263)( 8,262)
( 9,257)( 10,260)( 11,259)( 12,258)( 13,265)( 14,268)( 15,267)( 16,266)
( 17,273)( 18,276)( 19,275)( 20,274)( 21,269)( 22,272)( 23,271)( 24,270)
( 25,277)( 26,280)( 27,279)( 28,278)( 29,285)( 30,288)( 31,287)( 32,286)
( 33,281)( 34,284)( 35,283)( 36,282)( 37,217)( 38,220)( 39,219)( 40,218)
( 41,225)( 42,228)( 43,227)( 44,226)( 45,221)( 46,224)( 47,223)( 48,222)
( 49,229)( 50,232)( 51,231)( 52,230)( 53,237)( 54,240)( 55,239)( 56,238)
( 57,233)( 58,236)( 59,235)( 60,234)( 61,241)( 62,244)( 63,243)( 64,242)
( 65,249)( 66,252)( 67,251)( 68,250)( 69,245)( 70,248)( 71,247)( 72,246)
( 73,297)( 74,300)( 75,299)( 76,298)( 77,293)( 78,296)( 79,295)( 80,294)
( 81,289)( 82,292)( 83,291)( 84,290)( 85,309)( 86,312)( 87,311)( 88,310)
( 89,305)( 90,308)( 91,307)( 92,306)( 93,301)( 94,304)( 95,303)( 96,302)
( 97,321)( 98,324)( 99,323)(100,322)(101,317)(102,320)(103,319)(104,318)
(105,313)(106,316)(107,315)(108,314)(109,361)(110,364)(111,363)(112,362)
(113,369)(114,372)(115,371)(116,370)(117,365)(118,368)(119,367)(120,366)
(121,373)(122,376)(123,375)(124,374)(125,381)(126,384)(127,383)(128,382)
(129,377)(130,380)(131,379)(132,378)(133,385)(134,388)(135,387)(136,386)
(137,393)(138,396)(139,395)(140,394)(141,389)(142,392)(143,391)(144,390)
(145,325)(146,328)(147,327)(148,326)(149,333)(150,336)(151,335)(152,334)
(153,329)(154,332)(155,331)(156,330)(157,337)(158,340)(159,339)(160,338)
(161,345)(162,348)(163,347)(164,346)(165,341)(166,344)(167,343)(168,342)
(169,349)(170,352)(171,351)(172,350)(173,357)(174,360)(175,359)(176,358)
(177,353)(178,356)(179,355)(180,354)(181,405)(182,408)(183,407)(184,406)
(185,401)(186,404)(187,403)(188,402)(189,397)(190,400)(191,399)(192,398)
(193,417)(194,420)(195,419)(196,418)(197,413)(198,416)(199,415)(200,414)
(201,409)(202,412)(203,411)(204,410)(205,429)(206,432)(207,431)(208,430)
(209,425)(210,428)(211,427)(212,426)(213,421)(214,424)(215,423)(216,422);;
s2 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 26)( 14, 25)
( 15, 28)( 16, 27)( 17, 30)( 18, 29)( 19, 32)( 20, 31)( 21, 34)( 22, 33)
( 23, 36)( 24, 35)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)( 47, 48)
( 49, 62)( 50, 61)( 51, 64)( 52, 63)( 53, 66)( 54, 65)( 55, 68)( 56, 67)
( 57, 70)( 58, 69)( 59, 72)( 60, 71)( 73, 74)( 75, 76)( 77, 78)( 79, 80)
( 81, 82)( 83, 84)( 85, 98)( 86, 97)( 87,100)( 88, 99)( 89,102)( 90,101)
( 91,104)( 92,103)( 93,106)( 94,105)( 95,108)( 96,107)(109,110)(111,112)
(113,114)(115,116)(117,118)(119,120)(121,134)(122,133)(123,136)(124,135)
(125,138)(126,137)(127,140)(128,139)(129,142)(130,141)(131,144)(132,143)
(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,170)(158,169)
(159,172)(160,171)(161,174)(162,173)(163,176)(164,175)(165,178)(166,177)
(167,180)(168,179)(181,182)(183,184)(185,186)(187,188)(189,190)(191,192)
(193,206)(194,205)(195,208)(196,207)(197,210)(198,209)(199,212)(200,211)
(201,214)(202,213)(203,216)(204,215)(217,218)(219,220)(221,222)(223,224)
(225,226)(227,228)(229,242)(230,241)(231,244)(232,243)(233,246)(234,245)
(235,248)(236,247)(237,250)(238,249)(239,252)(240,251)(253,254)(255,256)
(257,258)(259,260)(261,262)(263,264)(265,278)(266,277)(267,280)(268,279)
(269,282)(270,281)(271,284)(272,283)(273,286)(274,285)(275,288)(276,287)
(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,314)(302,313)
(303,316)(304,315)(305,318)(306,317)(307,320)(308,319)(309,322)(310,321)
(311,324)(312,323)(325,326)(327,328)(329,330)(331,332)(333,334)(335,336)
(337,350)(338,349)(339,352)(340,351)(341,354)(342,353)(343,356)(344,355)
(345,358)(346,357)(347,360)(348,359)(361,362)(363,364)(365,366)(367,368)
(369,370)(371,372)(373,386)(374,385)(375,388)(376,387)(377,390)(378,389)
(379,392)(380,391)(381,394)(382,393)(383,396)(384,395)(397,398)(399,400)
(401,402)(403,404)(405,406)(407,408)(409,422)(410,421)(411,424)(412,423)
(413,426)(414,425)(415,428)(416,427)(417,430)(418,429)(419,432)(420,431);;
s3 := ( 1,121)( 2,122)( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)( 8,128)
( 9,129)( 10,130)( 11,131)( 12,132)( 13,109)( 14,110)( 15,111)( 16,112)
( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)( 24,120)
( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)( 32,140)
( 33,141)( 34,142)( 35,143)( 36,144)( 37,157)( 38,158)( 39,159)( 40,160)
( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)( 48,168)
( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)( 56,152)
( 57,153)( 58,154)( 59,155)( 60,156)( 61,169)( 62,170)( 63,171)( 64,172)
( 65,173)( 66,174)( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)( 72,180)
( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)( 80,200)
( 81,201)( 82,202)( 83,203)( 84,204)( 85,181)( 86,182)( 87,183)( 88,184)
( 89,185)( 90,186)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)( 96,192)
( 97,205)( 98,206)( 99,207)(100,208)(101,209)(102,210)(103,211)(104,212)
(105,213)(106,214)(107,215)(108,216)(217,337)(218,338)(219,339)(220,340)
(221,341)(222,342)(223,343)(224,344)(225,345)(226,346)(227,347)(228,348)
(229,325)(230,326)(231,327)(232,328)(233,329)(234,330)(235,331)(236,332)
(237,333)(238,334)(239,335)(240,336)(241,349)(242,350)(243,351)(244,352)
(245,353)(246,354)(247,355)(248,356)(249,357)(250,358)(251,359)(252,360)
(253,373)(254,374)(255,375)(256,376)(257,377)(258,378)(259,379)(260,380)
(261,381)(262,382)(263,383)(264,384)(265,361)(266,362)(267,363)(268,364)
(269,365)(270,366)(271,367)(272,368)(273,369)(274,370)(275,371)(276,372)
(277,385)(278,386)(279,387)(280,388)(281,389)(282,390)(283,391)(284,392)
(285,393)(286,394)(287,395)(288,396)(289,409)(290,410)(291,411)(292,412)
(293,413)(294,414)(295,415)(296,416)(297,417)(298,418)(299,419)(300,420)
(301,397)(302,398)(303,399)(304,400)(305,401)(306,402)(307,403)(308,404)
(309,405)(310,406)(311,407)(312,408)(313,421)(314,422)(315,423)(316,424)
(317,425)(318,426)(319,427)(320,428)(321,429)(322,430)(323,431)(324,432);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(432)!( 3, 4)( 5, 9)( 6, 10)( 7, 12)( 8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 37, 81)( 38, 82)( 39, 84)( 40, 83)( 41, 77)( 42, 78)( 43, 80)( 44, 79)
( 45, 73)( 46, 74)( 47, 76)( 48, 75)( 49, 93)( 50, 94)( 51, 96)( 52, 95)
( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 85)( 58, 86)( 59, 88)( 60, 87)
( 61,105)( 62,106)( 63,108)( 64,107)( 65,101)( 66,102)( 67,104)( 68,103)
( 69, 97)( 70, 98)( 71,100)( 72, 99)(111,112)(113,117)(114,118)(115,120)
(116,119)(123,124)(125,129)(126,130)(127,132)(128,131)(135,136)(137,141)
(138,142)(139,144)(140,143)(145,189)(146,190)(147,192)(148,191)(149,185)
(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)(157,201)
(158,202)(159,204)(160,203)(161,197)(162,198)(163,200)(164,199)(165,193)
(166,194)(167,196)(168,195)(169,213)(170,214)(171,216)(172,215)(173,209)
(174,210)(175,212)(176,211)(177,205)(178,206)(179,208)(180,207)(219,220)
(221,225)(222,226)(223,228)(224,227)(231,232)(233,237)(234,238)(235,240)
(236,239)(243,244)(245,249)(246,250)(247,252)(248,251)(253,297)(254,298)
(255,300)(256,299)(257,293)(258,294)(259,296)(260,295)(261,289)(262,290)
(263,292)(264,291)(265,309)(266,310)(267,312)(268,311)(269,305)(270,306)
(271,308)(272,307)(273,301)(274,302)(275,304)(276,303)(277,321)(278,322)
(279,324)(280,323)(281,317)(282,318)(283,320)(284,319)(285,313)(286,314)
(287,316)(288,315)(327,328)(329,333)(330,334)(331,336)(332,335)(339,340)
(341,345)(342,346)(343,348)(344,347)(351,352)(353,357)(354,358)(355,360)
(356,359)(361,405)(362,406)(363,408)(364,407)(365,401)(366,402)(367,404)
(368,403)(369,397)(370,398)(371,400)(372,399)(373,417)(374,418)(375,420)
(376,419)(377,413)(378,414)(379,416)(380,415)(381,409)(382,410)(383,412)
(384,411)(385,429)(386,430)(387,432)(388,431)(389,425)(390,426)(391,428)
(392,427)(393,421)(394,422)(395,424)(396,423);
s1 := Sym(432)!( 1,253)( 2,256)( 3,255)( 4,254)( 5,261)( 6,264)( 7,263)
( 8,262)( 9,257)( 10,260)( 11,259)( 12,258)( 13,265)( 14,268)( 15,267)
( 16,266)( 17,273)( 18,276)( 19,275)( 20,274)( 21,269)( 22,272)( 23,271)
( 24,270)( 25,277)( 26,280)( 27,279)( 28,278)( 29,285)( 30,288)( 31,287)
( 32,286)( 33,281)( 34,284)( 35,283)( 36,282)( 37,217)( 38,220)( 39,219)
( 40,218)( 41,225)( 42,228)( 43,227)( 44,226)( 45,221)( 46,224)( 47,223)
( 48,222)( 49,229)( 50,232)( 51,231)( 52,230)( 53,237)( 54,240)( 55,239)
( 56,238)( 57,233)( 58,236)( 59,235)( 60,234)( 61,241)( 62,244)( 63,243)
( 64,242)( 65,249)( 66,252)( 67,251)( 68,250)( 69,245)( 70,248)( 71,247)
( 72,246)( 73,297)( 74,300)( 75,299)( 76,298)( 77,293)( 78,296)( 79,295)
( 80,294)( 81,289)( 82,292)( 83,291)( 84,290)( 85,309)( 86,312)( 87,311)
( 88,310)( 89,305)( 90,308)( 91,307)( 92,306)( 93,301)( 94,304)( 95,303)
( 96,302)( 97,321)( 98,324)( 99,323)(100,322)(101,317)(102,320)(103,319)
(104,318)(105,313)(106,316)(107,315)(108,314)(109,361)(110,364)(111,363)
(112,362)(113,369)(114,372)(115,371)(116,370)(117,365)(118,368)(119,367)
(120,366)(121,373)(122,376)(123,375)(124,374)(125,381)(126,384)(127,383)
(128,382)(129,377)(130,380)(131,379)(132,378)(133,385)(134,388)(135,387)
(136,386)(137,393)(138,396)(139,395)(140,394)(141,389)(142,392)(143,391)
(144,390)(145,325)(146,328)(147,327)(148,326)(149,333)(150,336)(151,335)
(152,334)(153,329)(154,332)(155,331)(156,330)(157,337)(158,340)(159,339)
(160,338)(161,345)(162,348)(163,347)(164,346)(165,341)(166,344)(167,343)
(168,342)(169,349)(170,352)(171,351)(172,350)(173,357)(174,360)(175,359)
(176,358)(177,353)(178,356)(179,355)(180,354)(181,405)(182,408)(183,407)
(184,406)(185,401)(186,404)(187,403)(188,402)(189,397)(190,400)(191,399)
(192,398)(193,417)(194,420)(195,419)(196,418)(197,413)(198,416)(199,415)
(200,414)(201,409)(202,412)(203,411)(204,410)(205,429)(206,432)(207,431)
(208,430)(209,425)(210,428)(211,427)(212,426)(213,421)(214,424)(215,423)
(216,422);
s2 := Sym(432)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9, 10)( 11, 12)( 13, 26)
( 14, 25)( 15, 28)( 16, 27)( 17, 30)( 18, 29)( 19, 32)( 20, 31)( 21, 34)
( 22, 33)( 23, 36)( 24, 35)( 37, 38)( 39, 40)( 41, 42)( 43, 44)( 45, 46)
( 47, 48)( 49, 62)( 50, 61)( 51, 64)( 52, 63)( 53, 66)( 54, 65)( 55, 68)
( 56, 67)( 57, 70)( 58, 69)( 59, 72)( 60, 71)( 73, 74)( 75, 76)( 77, 78)
( 79, 80)( 81, 82)( 83, 84)( 85, 98)( 86, 97)( 87,100)( 88, 99)( 89,102)
( 90,101)( 91,104)( 92,103)( 93,106)( 94,105)( 95,108)( 96,107)(109,110)
(111,112)(113,114)(115,116)(117,118)(119,120)(121,134)(122,133)(123,136)
(124,135)(125,138)(126,137)(127,140)(128,139)(129,142)(130,141)(131,144)
(132,143)(145,146)(147,148)(149,150)(151,152)(153,154)(155,156)(157,170)
(158,169)(159,172)(160,171)(161,174)(162,173)(163,176)(164,175)(165,178)
(166,177)(167,180)(168,179)(181,182)(183,184)(185,186)(187,188)(189,190)
(191,192)(193,206)(194,205)(195,208)(196,207)(197,210)(198,209)(199,212)
(200,211)(201,214)(202,213)(203,216)(204,215)(217,218)(219,220)(221,222)
(223,224)(225,226)(227,228)(229,242)(230,241)(231,244)(232,243)(233,246)
(234,245)(235,248)(236,247)(237,250)(238,249)(239,252)(240,251)(253,254)
(255,256)(257,258)(259,260)(261,262)(263,264)(265,278)(266,277)(267,280)
(268,279)(269,282)(270,281)(271,284)(272,283)(273,286)(274,285)(275,288)
(276,287)(289,290)(291,292)(293,294)(295,296)(297,298)(299,300)(301,314)
(302,313)(303,316)(304,315)(305,318)(306,317)(307,320)(308,319)(309,322)
(310,321)(311,324)(312,323)(325,326)(327,328)(329,330)(331,332)(333,334)
(335,336)(337,350)(338,349)(339,352)(340,351)(341,354)(342,353)(343,356)
(344,355)(345,358)(346,357)(347,360)(348,359)(361,362)(363,364)(365,366)
(367,368)(369,370)(371,372)(373,386)(374,385)(375,388)(376,387)(377,390)
(378,389)(379,392)(380,391)(381,394)(382,393)(383,396)(384,395)(397,398)
(399,400)(401,402)(403,404)(405,406)(407,408)(409,422)(410,421)(411,424)
(412,423)(413,426)(414,425)(415,428)(416,427)(417,430)(418,429)(419,432)
(420,431);
s3 := Sym(432)!( 1,121)( 2,122)( 3,123)( 4,124)( 5,125)( 6,126)( 7,127)
( 8,128)( 9,129)( 10,130)( 11,131)( 12,132)( 13,109)( 14,110)( 15,111)
( 16,112)( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)
( 24,120)( 25,133)( 26,134)( 27,135)( 28,136)( 29,137)( 30,138)( 31,139)
( 32,140)( 33,141)( 34,142)( 35,143)( 36,144)( 37,157)( 38,158)( 39,159)
( 40,160)( 41,161)( 42,162)( 43,163)( 44,164)( 45,165)( 46,166)( 47,167)
( 48,168)( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)
( 56,152)( 57,153)( 58,154)( 59,155)( 60,156)( 61,169)( 62,170)( 63,171)
( 64,172)( 65,173)( 66,174)( 67,175)( 68,176)( 69,177)( 70,178)( 71,179)
( 72,180)( 73,193)( 74,194)( 75,195)( 76,196)( 77,197)( 78,198)( 79,199)
( 80,200)( 81,201)( 82,202)( 83,203)( 84,204)( 85,181)( 86,182)( 87,183)
( 88,184)( 89,185)( 90,186)( 91,187)( 92,188)( 93,189)( 94,190)( 95,191)
( 96,192)( 97,205)( 98,206)( 99,207)(100,208)(101,209)(102,210)(103,211)
(104,212)(105,213)(106,214)(107,215)(108,216)(217,337)(218,338)(219,339)
(220,340)(221,341)(222,342)(223,343)(224,344)(225,345)(226,346)(227,347)
(228,348)(229,325)(230,326)(231,327)(232,328)(233,329)(234,330)(235,331)
(236,332)(237,333)(238,334)(239,335)(240,336)(241,349)(242,350)(243,351)
(244,352)(245,353)(246,354)(247,355)(248,356)(249,357)(250,358)(251,359)
(252,360)(253,373)(254,374)(255,375)(256,376)(257,377)(258,378)(259,379)
(260,380)(261,381)(262,382)(263,383)(264,384)(265,361)(266,362)(267,363)
(268,364)(269,365)(270,366)(271,367)(272,368)(273,369)(274,370)(275,371)
(276,372)(277,385)(278,386)(279,387)(280,388)(281,389)(282,390)(283,391)
(284,392)(285,393)(286,394)(287,395)(288,396)(289,409)(290,410)(291,411)
(292,412)(293,413)(294,414)(295,415)(296,416)(297,417)(298,418)(299,419)
(300,420)(301,397)(302,398)(303,399)(304,400)(305,401)(306,402)(307,403)
(308,404)(309,405)(310,406)(311,407)(312,408)(313,421)(314,422)(315,423)
(316,424)(317,425)(318,426)(319,427)(320,428)(321,429)(322,430)(323,431)
(324,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope