include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {432,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {432,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,472)
Rank : 3
Schlafli Type : {432,2}
Number of vertices, edges, etc : 432, 432, 2
Order of s0s1s2 : 432
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {216,2}*864
3-fold quotients : {144,2}*576
4-fold quotients : {108,2}*432
6-fold quotients : {72,2}*288
8-fold quotients : {54,2}*216
9-fold quotients : {48,2}*192
12-fold quotients : {36,2}*144
16-fold quotients : {27,2}*108
18-fold quotients : {24,2}*96
24-fold quotients : {18,2}*72
27-fold quotients : {16,2}*64
36-fold quotients : {12,2}*48
48-fold quotients : {9,2}*36
54-fold quotients : {8,2}*32
72-fold quotients : {6,2}*24
108-fold quotients : {4,2}*16
144-fold quotients : {3,2}*12
216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 10, 27)( 11, 26)( 12, 25)( 13, 24)
( 14, 23)( 15, 22)( 16, 21)( 17, 20)( 18, 19)( 29, 30)( 31, 36)( 32, 35)
( 33, 34)( 37, 54)( 38, 53)( 39, 52)( 40, 51)( 41, 50)( 42, 49)( 43, 48)
( 44, 47)( 45, 46)( 55, 82)( 56, 84)( 57, 83)( 58, 90)( 59, 89)( 60, 88)
( 61, 87)( 62, 86)( 63, 85)( 64,108)( 65,107)( 66,106)( 67,105)( 68,104)
( 69,103)( 70,102)( 71,101)( 72,100)( 73, 99)( 74, 98)( 75, 97)( 76, 96)
( 77, 95)( 78, 94)( 79, 93)( 80, 92)( 81, 91)(109,163)(110,165)(111,164)
(112,171)(113,170)(114,169)(115,168)(116,167)(117,166)(118,189)(119,188)
(120,187)(121,186)(122,185)(123,184)(124,183)(125,182)(126,181)(127,180)
(128,179)(129,178)(130,177)(131,176)(132,175)(133,174)(134,173)(135,172)
(136,190)(137,192)(138,191)(139,198)(140,197)(141,196)(142,195)(143,194)
(144,193)(145,216)(146,215)(147,214)(148,213)(149,212)(150,211)(151,210)
(152,209)(153,208)(154,207)(155,206)(156,205)(157,204)(158,203)(159,202)
(160,201)(161,200)(162,199)(217,325)(218,327)(219,326)(220,333)(221,332)
(222,331)(223,330)(224,329)(225,328)(226,351)(227,350)(228,349)(229,348)
(230,347)(231,346)(232,345)(233,344)(234,343)(235,342)(236,341)(237,340)
(238,339)(239,338)(240,337)(241,336)(242,335)(243,334)(244,352)(245,354)
(246,353)(247,360)(248,359)(249,358)(250,357)(251,356)(252,355)(253,378)
(254,377)(255,376)(256,375)(257,374)(258,373)(259,372)(260,371)(261,370)
(262,369)(263,368)(264,367)(265,366)(266,365)(267,364)(268,363)(269,362)
(270,361)(271,406)(272,408)(273,407)(274,414)(275,413)(276,412)(277,411)
(278,410)(279,409)(280,432)(281,431)(282,430)(283,429)(284,428)(285,427)
(286,426)(287,425)(288,424)(289,423)(290,422)(291,421)(292,420)(293,419)
(294,418)(295,417)(296,416)(297,415)(298,379)(299,381)(300,380)(301,387)
(302,386)(303,385)(304,384)(305,383)(306,382)(307,405)(308,404)(309,403)
(310,402)(311,401)(312,400)(313,399)(314,398)(315,397)(316,396)(317,395)
(318,394)(319,393)(320,392)(321,391)(322,390)(323,389)(324,388);;
s1 := ( 1,226)( 2,228)( 3,227)( 4,234)( 5,233)( 6,232)( 7,231)( 8,230)
( 9,229)( 10,217)( 11,219)( 12,218)( 13,225)( 14,224)( 15,223)( 16,222)
( 17,221)( 18,220)( 19,243)( 20,242)( 21,241)( 22,240)( 23,239)( 24,238)
( 25,237)( 26,236)( 27,235)( 28,253)( 29,255)( 30,254)( 31,261)( 32,260)
( 33,259)( 34,258)( 35,257)( 36,256)( 37,244)( 38,246)( 39,245)( 40,252)
( 41,251)( 42,250)( 43,249)( 44,248)( 45,247)( 46,270)( 47,269)( 48,268)
( 49,267)( 50,266)( 51,265)( 52,264)( 53,263)( 54,262)( 55,307)( 56,309)
( 57,308)( 58,315)( 59,314)( 60,313)( 61,312)( 62,311)( 63,310)( 64,298)
( 65,300)( 66,299)( 67,306)( 68,305)( 69,304)( 70,303)( 71,302)( 72,301)
( 73,324)( 74,323)( 75,322)( 76,321)( 77,320)( 78,319)( 79,318)( 80,317)
( 81,316)( 82,280)( 83,282)( 84,281)( 85,288)( 86,287)( 87,286)( 88,285)
( 89,284)( 90,283)( 91,271)( 92,273)( 93,272)( 94,279)( 95,278)( 96,277)
( 97,276)( 98,275)( 99,274)(100,297)(101,296)(102,295)(103,294)(104,293)
(105,292)(106,291)(107,290)(108,289)(109,388)(110,390)(111,389)(112,396)
(113,395)(114,394)(115,393)(116,392)(117,391)(118,379)(119,381)(120,380)
(121,387)(122,386)(123,385)(124,384)(125,383)(126,382)(127,405)(128,404)
(129,403)(130,402)(131,401)(132,400)(133,399)(134,398)(135,397)(136,415)
(137,417)(138,416)(139,423)(140,422)(141,421)(142,420)(143,419)(144,418)
(145,406)(146,408)(147,407)(148,414)(149,413)(150,412)(151,411)(152,410)
(153,409)(154,432)(155,431)(156,430)(157,429)(158,428)(159,427)(160,426)
(161,425)(162,424)(163,334)(164,336)(165,335)(166,342)(167,341)(168,340)
(169,339)(170,338)(171,337)(172,325)(173,327)(174,326)(175,333)(176,332)
(177,331)(178,330)(179,329)(180,328)(181,351)(182,350)(183,349)(184,348)
(185,347)(186,346)(187,345)(188,344)(189,343)(190,361)(191,363)(192,362)
(193,369)(194,368)(195,367)(196,366)(197,365)(198,364)(199,352)(200,354)
(201,353)(202,360)(203,359)(204,358)(205,357)(206,356)(207,355)(208,378)
(209,377)(210,376)(211,375)(212,374)(213,373)(214,372)(215,371)(216,370);;
s2 := (433,434);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(434)!( 2, 3)( 4, 9)( 5, 8)( 6, 7)( 10, 27)( 11, 26)( 12, 25)
( 13, 24)( 14, 23)( 15, 22)( 16, 21)( 17, 20)( 18, 19)( 29, 30)( 31, 36)
( 32, 35)( 33, 34)( 37, 54)( 38, 53)( 39, 52)( 40, 51)( 41, 50)( 42, 49)
( 43, 48)( 44, 47)( 45, 46)( 55, 82)( 56, 84)( 57, 83)( 58, 90)( 59, 89)
( 60, 88)( 61, 87)( 62, 86)( 63, 85)( 64,108)( 65,107)( 66,106)( 67,105)
( 68,104)( 69,103)( 70,102)( 71,101)( 72,100)( 73, 99)( 74, 98)( 75, 97)
( 76, 96)( 77, 95)( 78, 94)( 79, 93)( 80, 92)( 81, 91)(109,163)(110,165)
(111,164)(112,171)(113,170)(114,169)(115,168)(116,167)(117,166)(118,189)
(119,188)(120,187)(121,186)(122,185)(123,184)(124,183)(125,182)(126,181)
(127,180)(128,179)(129,178)(130,177)(131,176)(132,175)(133,174)(134,173)
(135,172)(136,190)(137,192)(138,191)(139,198)(140,197)(141,196)(142,195)
(143,194)(144,193)(145,216)(146,215)(147,214)(148,213)(149,212)(150,211)
(151,210)(152,209)(153,208)(154,207)(155,206)(156,205)(157,204)(158,203)
(159,202)(160,201)(161,200)(162,199)(217,325)(218,327)(219,326)(220,333)
(221,332)(222,331)(223,330)(224,329)(225,328)(226,351)(227,350)(228,349)
(229,348)(230,347)(231,346)(232,345)(233,344)(234,343)(235,342)(236,341)
(237,340)(238,339)(239,338)(240,337)(241,336)(242,335)(243,334)(244,352)
(245,354)(246,353)(247,360)(248,359)(249,358)(250,357)(251,356)(252,355)
(253,378)(254,377)(255,376)(256,375)(257,374)(258,373)(259,372)(260,371)
(261,370)(262,369)(263,368)(264,367)(265,366)(266,365)(267,364)(268,363)
(269,362)(270,361)(271,406)(272,408)(273,407)(274,414)(275,413)(276,412)
(277,411)(278,410)(279,409)(280,432)(281,431)(282,430)(283,429)(284,428)
(285,427)(286,426)(287,425)(288,424)(289,423)(290,422)(291,421)(292,420)
(293,419)(294,418)(295,417)(296,416)(297,415)(298,379)(299,381)(300,380)
(301,387)(302,386)(303,385)(304,384)(305,383)(306,382)(307,405)(308,404)
(309,403)(310,402)(311,401)(312,400)(313,399)(314,398)(315,397)(316,396)
(317,395)(318,394)(319,393)(320,392)(321,391)(322,390)(323,389)(324,388);
s1 := Sym(434)!( 1,226)( 2,228)( 3,227)( 4,234)( 5,233)( 6,232)( 7,231)
( 8,230)( 9,229)( 10,217)( 11,219)( 12,218)( 13,225)( 14,224)( 15,223)
( 16,222)( 17,221)( 18,220)( 19,243)( 20,242)( 21,241)( 22,240)( 23,239)
( 24,238)( 25,237)( 26,236)( 27,235)( 28,253)( 29,255)( 30,254)( 31,261)
( 32,260)( 33,259)( 34,258)( 35,257)( 36,256)( 37,244)( 38,246)( 39,245)
( 40,252)( 41,251)( 42,250)( 43,249)( 44,248)( 45,247)( 46,270)( 47,269)
( 48,268)( 49,267)( 50,266)( 51,265)( 52,264)( 53,263)( 54,262)( 55,307)
( 56,309)( 57,308)( 58,315)( 59,314)( 60,313)( 61,312)( 62,311)( 63,310)
( 64,298)( 65,300)( 66,299)( 67,306)( 68,305)( 69,304)( 70,303)( 71,302)
( 72,301)( 73,324)( 74,323)( 75,322)( 76,321)( 77,320)( 78,319)( 79,318)
( 80,317)( 81,316)( 82,280)( 83,282)( 84,281)( 85,288)( 86,287)( 87,286)
( 88,285)( 89,284)( 90,283)( 91,271)( 92,273)( 93,272)( 94,279)( 95,278)
( 96,277)( 97,276)( 98,275)( 99,274)(100,297)(101,296)(102,295)(103,294)
(104,293)(105,292)(106,291)(107,290)(108,289)(109,388)(110,390)(111,389)
(112,396)(113,395)(114,394)(115,393)(116,392)(117,391)(118,379)(119,381)
(120,380)(121,387)(122,386)(123,385)(124,384)(125,383)(126,382)(127,405)
(128,404)(129,403)(130,402)(131,401)(132,400)(133,399)(134,398)(135,397)
(136,415)(137,417)(138,416)(139,423)(140,422)(141,421)(142,420)(143,419)
(144,418)(145,406)(146,408)(147,407)(148,414)(149,413)(150,412)(151,411)
(152,410)(153,409)(154,432)(155,431)(156,430)(157,429)(158,428)(159,427)
(160,426)(161,425)(162,424)(163,334)(164,336)(165,335)(166,342)(167,341)
(168,340)(169,339)(170,338)(171,337)(172,325)(173,327)(174,326)(175,333)
(176,332)(177,331)(178,330)(179,329)(180,328)(181,351)(182,350)(183,349)
(184,348)(185,347)(186,346)(187,345)(188,344)(189,343)(190,361)(191,363)
(192,362)(193,369)(194,368)(195,367)(196,366)(197,365)(198,364)(199,352)
(200,354)(201,353)(202,360)(203,359)(204,358)(205,357)(206,356)(207,355)
(208,378)(209,377)(210,376)(211,375)(212,374)(213,373)(214,372)(215,371)
(216,370);
s2 := Sym(434)!(433,434);
poly := sub<Sym(434)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope