include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,432}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,432}*1728
if this polytope has a name.
Group : SmallGroup(1728,472)
Rank : 3
Schlafli Type : {2,432}
Number of vertices, edges, etc : 2, 432, 432
Order of s0s1s2 : 432
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,216}*864
3-fold quotients : {2,144}*576
4-fold quotients : {2,108}*432
6-fold quotients : {2,72}*288
8-fold quotients : {2,54}*216
9-fold quotients : {2,48}*192
12-fold quotients : {2,36}*144
16-fold quotients : {2,27}*108
18-fold quotients : {2,24}*96
24-fold quotients : {2,18}*72
27-fold quotients : {2,16}*64
36-fold quotients : {2,12}*48
48-fold quotients : {2,9}*36
54-fold quotients : {2,8}*32
72-fold quotients : {2,6}*24
108-fold quotients : {2,4}*16
144-fold quotients : {2,3}*12
216-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 11)( 7, 10)( 8, 9)( 12, 29)( 13, 28)( 14, 27)( 15, 26)
( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 31, 32)( 33, 38)( 34, 37)
( 35, 36)( 39, 56)( 40, 55)( 41, 54)( 42, 53)( 43, 52)( 44, 51)( 45, 50)
( 46, 49)( 47, 48)( 57, 84)( 58, 86)( 59, 85)( 60, 92)( 61, 91)( 62, 90)
( 63, 89)( 64, 88)( 65, 87)( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)
( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)
( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)(111,165)(112,167)(113,166)
(114,173)(115,172)(116,171)(117,170)(118,169)(119,168)(120,191)(121,190)
(122,189)(123,188)(124,187)(125,186)(126,185)(127,184)(128,183)(129,182)
(130,181)(131,180)(132,179)(133,178)(134,177)(135,176)(136,175)(137,174)
(138,192)(139,194)(140,193)(141,200)(142,199)(143,198)(144,197)(145,196)
(146,195)(147,218)(148,217)(149,216)(150,215)(151,214)(152,213)(153,212)
(154,211)(155,210)(156,209)(157,208)(158,207)(159,206)(160,205)(161,204)
(162,203)(163,202)(164,201)(219,327)(220,329)(221,328)(222,335)(223,334)
(224,333)(225,332)(226,331)(227,330)(228,353)(229,352)(230,351)(231,350)
(232,349)(233,348)(234,347)(235,346)(236,345)(237,344)(238,343)(239,342)
(240,341)(241,340)(242,339)(243,338)(244,337)(245,336)(246,354)(247,356)
(248,355)(249,362)(250,361)(251,360)(252,359)(253,358)(254,357)(255,380)
(256,379)(257,378)(258,377)(259,376)(260,375)(261,374)(262,373)(263,372)
(264,371)(265,370)(266,369)(267,368)(268,367)(269,366)(270,365)(271,364)
(272,363)(273,408)(274,410)(275,409)(276,416)(277,415)(278,414)(279,413)
(280,412)(281,411)(282,434)(283,433)(284,432)(285,431)(286,430)(287,429)
(288,428)(289,427)(290,426)(291,425)(292,424)(293,423)(294,422)(295,421)
(296,420)(297,419)(298,418)(299,417)(300,381)(301,383)(302,382)(303,389)
(304,388)(305,387)(306,386)(307,385)(308,384)(309,407)(310,406)(311,405)
(312,404)(313,403)(314,402)(315,401)(316,400)(317,399)(318,398)(319,397)
(320,396)(321,395)(322,394)(323,393)(324,392)(325,391)(326,390);;
s2 := ( 3,228)( 4,230)( 5,229)( 6,236)( 7,235)( 8,234)( 9,233)( 10,232)
( 11,231)( 12,219)( 13,221)( 14,220)( 15,227)( 16,226)( 17,225)( 18,224)
( 19,223)( 20,222)( 21,245)( 22,244)( 23,243)( 24,242)( 25,241)( 26,240)
( 27,239)( 28,238)( 29,237)( 30,255)( 31,257)( 32,256)( 33,263)( 34,262)
( 35,261)( 36,260)( 37,259)( 38,258)( 39,246)( 40,248)( 41,247)( 42,254)
( 43,253)( 44,252)( 45,251)( 46,250)( 47,249)( 48,272)( 49,271)( 50,270)
( 51,269)( 52,268)( 53,267)( 54,266)( 55,265)( 56,264)( 57,309)( 58,311)
( 59,310)( 60,317)( 61,316)( 62,315)( 63,314)( 64,313)( 65,312)( 66,300)
( 67,302)( 68,301)( 69,308)( 70,307)( 71,306)( 72,305)( 73,304)( 74,303)
( 75,326)( 76,325)( 77,324)( 78,323)( 79,322)( 80,321)( 81,320)( 82,319)
( 83,318)( 84,282)( 85,284)( 86,283)( 87,290)( 88,289)( 89,288)( 90,287)
( 91,286)( 92,285)( 93,273)( 94,275)( 95,274)( 96,281)( 97,280)( 98,279)
( 99,278)(100,277)(101,276)(102,299)(103,298)(104,297)(105,296)(106,295)
(107,294)(108,293)(109,292)(110,291)(111,390)(112,392)(113,391)(114,398)
(115,397)(116,396)(117,395)(118,394)(119,393)(120,381)(121,383)(122,382)
(123,389)(124,388)(125,387)(126,386)(127,385)(128,384)(129,407)(130,406)
(131,405)(132,404)(133,403)(134,402)(135,401)(136,400)(137,399)(138,417)
(139,419)(140,418)(141,425)(142,424)(143,423)(144,422)(145,421)(146,420)
(147,408)(148,410)(149,409)(150,416)(151,415)(152,414)(153,413)(154,412)
(155,411)(156,434)(157,433)(158,432)(159,431)(160,430)(161,429)(162,428)
(163,427)(164,426)(165,336)(166,338)(167,337)(168,344)(169,343)(170,342)
(171,341)(172,340)(173,339)(174,327)(175,329)(176,328)(177,335)(178,334)
(179,333)(180,332)(181,331)(182,330)(183,353)(184,352)(185,351)(186,350)
(187,349)(188,348)(189,347)(190,346)(191,345)(192,363)(193,365)(194,364)
(195,371)(196,370)(197,369)(198,368)(199,367)(200,366)(201,354)(202,356)
(203,355)(204,362)(205,361)(206,360)(207,359)(208,358)(209,357)(210,380)
(211,379)(212,378)(213,377)(214,376)(215,375)(216,374)(217,373)(218,372);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(434)!(1,2);
s1 := Sym(434)!( 4, 5)( 6, 11)( 7, 10)( 8, 9)( 12, 29)( 13, 28)( 14, 27)
( 15, 26)( 16, 25)( 17, 24)( 18, 23)( 19, 22)( 20, 21)( 31, 32)( 33, 38)
( 34, 37)( 35, 36)( 39, 56)( 40, 55)( 41, 54)( 42, 53)( 43, 52)( 44, 51)
( 45, 50)( 46, 49)( 47, 48)( 57, 84)( 58, 86)( 59, 85)( 60, 92)( 61, 91)
( 62, 90)( 63, 89)( 64, 88)( 65, 87)( 66,110)( 67,109)( 68,108)( 69,107)
( 70,106)( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)
( 78, 98)( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)(111,165)(112,167)
(113,166)(114,173)(115,172)(116,171)(117,170)(118,169)(119,168)(120,191)
(121,190)(122,189)(123,188)(124,187)(125,186)(126,185)(127,184)(128,183)
(129,182)(130,181)(131,180)(132,179)(133,178)(134,177)(135,176)(136,175)
(137,174)(138,192)(139,194)(140,193)(141,200)(142,199)(143,198)(144,197)
(145,196)(146,195)(147,218)(148,217)(149,216)(150,215)(151,214)(152,213)
(153,212)(154,211)(155,210)(156,209)(157,208)(158,207)(159,206)(160,205)
(161,204)(162,203)(163,202)(164,201)(219,327)(220,329)(221,328)(222,335)
(223,334)(224,333)(225,332)(226,331)(227,330)(228,353)(229,352)(230,351)
(231,350)(232,349)(233,348)(234,347)(235,346)(236,345)(237,344)(238,343)
(239,342)(240,341)(241,340)(242,339)(243,338)(244,337)(245,336)(246,354)
(247,356)(248,355)(249,362)(250,361)(251,360)(252,359)(253,358)(254,357)
(255,380)(256,379)(257,378)(258,377)(259,376)(260,375)(261,374)(262,373)
(263,372)(264,371)(265,370)(266,369)(267,368)(268,367)(269,366)(270,365)
(271,364)(272,363)(273,408)(274,410)(275,409)(276,416)(277,415)(278,414)
(279,413)(280,412)(281,411)(282,434)(283,433)(284,432)(285,431)(286,430)
(287,429)(288,428)(289,427)(290,426)(291,425)(292,424)(293,423)(294,422)
(295,421)(296,420)(297,419)(298,418)(299,417)(300,381)(301,383)(302,382)
(303,389)(304,388)(305,387)(306,386)(307,385)(308,384)(309,407)(310,406)
(311,405)(312,404)(313,403)(314,402)(315,401)(316,400)(317,399)(318,398)
(319,397)(320,396)(321,395)(322,394)(323,393)(324,392)(325,391)(326,390);
s2 := Sym(434)!( 3,228)( 4,230)( 5,229)( 6,236)( 7,235)( 8,234)( 9,233)
( 10,232)( 11,231)( 12,219)( 13,221)( 14,220)( 15,227)( 16,226)( 17,225)
( 18,224)( 19,223)( 20,222)( 21,245)( 22,244)( 23,243)( 24,242)( 25,241)
( 26,240)( 27,239)( 28,238)( 29,237)( 30,255)( 31,257)( 32,256)( 33,263)
( 34,262)( 35,261)( 36,260)( 37,259)( 38,258)( 39,246)( 40,248)( 41,247)
( 42,254)( 43,253)( 44,252)( 45,251)( 46,250)( 47,249)( 48,272)( 49,271)
( 50,270)( 51,269)( 52,268)( 53,267)( 54,266)( 55,265)( 56,264)( 57,309)
( 58,311)( 59,310)( 60,317)( 61,316)( 62,315)( 63,314)( 64,313)( 65,312)
( 66,300)( 67,302)( 68,301)( 69,308)( 70,307)( 71,306)( 72,305)( 73,304)
( 74,303)( 75,326)( 76,325)( 77,324)( 78,323)( 79,322)( 80,321)( 81,320)
( 82,319)( 83,318)( 84,282)( 85,284)( 86,283)( 87,290)( 88,289)( 89,288)
( 90,287)( 91,286)( 92,285)( 93,273)( 94,275)( 95,274)( 96,281)( 97,280)
( 98,279)( 99,278)(100,277)(101,276)(102,299)(103,298)(104,297)(105,296)
(106,295)(107,294)(108,293)(109,292)(110,291)(111,390)(112,392)(113,391)
(114,398)(115,397)(116,396)(117,395)(118,394)(119,393)(120,381)(121,383)
(122,382)(123,389)(124,388)(125,387)(126,386)(127,385)(128,384)(129,407)
(130,406)(131,405)(132,404)(133,403)(134,402)(135,401)(136,400)(137,399)
(138,417)(139,419)(140,418)(141,425)(142,424)(143,423)(144,422)(145,421)
(146,420)(147,408)(148,410)(149,409)(150,416)(151,415)(152,414)(153,413)
(154,412)(155,411)(156,434)(157,433)(158,432)(159,431)(160,430)(161,429)
(162,428)(163,427)(164,426)(165,336)(166,338)(167,337)(168,344)(169,343)
(170,342)(171,341)(172,340)(173,339)(174,327)(175,329)(176,328)(177,335)
(178,334)(179,333)(180,332)(181,331)(182,330)(183,353)(184,352)(185,351)
(186,350)(187,349)(188,348)(189,347)(190,346)(191,345)(192,363)(193,365)
(194,364)(195,371)(196,370)(197,369)(198,368)(199,367)(200,366)(201,354)
(202,356)(203,355)(204,362)(205,361)(206,360)(207,359)(208,358)(209,357)
(210,380)(211,379)(212,378)(213,377)(214,376)(215,375)(216,374)(217,373)
(218,372);
poly := sub<Sym(434)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope