include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,6,4,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,6,4,2}*1728d
if this polytope has a name.
Group : SmallGroup(1728,47410)
Rank : 6
Schlafli Type : {3,6,6,4,2}
Number of vertices, edges, etc : 3, 9, 18, 12, 4, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,6,2,2}*864b
3-fold quotients : {3,2,6,4,2}*576a, {3,6,2,4,2}*576
6-fold quotients : {3,2,6,2,2}*288, {3,6,2,2,2}*288
9-fold quotients : {3,2,2,4,2}*192
12-fold quotients : {3,2,3,2,2}*144
18-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)( 51, 53)
( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)( 69, 71)
( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)( 87, 89)
( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)(105,107);;
s1 := ( 1, 5)( 2, 4)( 3, 6)( 7, 8)( 10, 14)( 11, 13)( 12, 15)( 16, 17)
( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 32)( 29, 31)( 30, 33)( 34, 35)
( 37, 41)( 38, 40)( 39, 42)( 43, 44)( 46, 50)( 47, 49)( 48, 51)( 52, 53)
( 55, 59)( 56, 58)( 57, 60)( 61, 62)( 64, 68)( 65, 67)( 66, 69)( 70, 71)
( 73, 77)( 74, 76)( 75, 78)( 79, 80)( 82, 86)( 83, 85)( 84, 87)( 88, 89)
( 91, 95)( 92, 94)( 93, 96)( 97, 98)(100,104)(101,103)(102,105)(106,107);;
s2 := ( 2, 3)( 5, 6)( 8, 9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)( 14, 24)
( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)
( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)( 68, 78)
( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)( 91,100)
( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)( 99,107);;
s3 := ( 1, 10)( 2, 11)( 3, 12)( 4, 13)( 5, 14)( 6, 15)( 7, 16)( 8, 17)
( 9, 18)( 28, 37)( 29, 38)( 30, 39)( 31, 40)( 32, 41)( 33, 42)( 34, 43)
( 35, 44)( 36, 45)( 55, 91)( 56, 92)( 57, 93)( 58, 94)( 59, 95)( 60, 96)
( 61, 97)( 62, 98)( 63, 99)( 64, 82)( 65, 83)( 66, 84)( 67, 85)( 68, 86)
( 69, 87)( 70, 88)( 71, 89)( 72, 90)( 73,100)( 74,101)( 75,102)( 76,103)
( 77,104)( 78,105)( 79,106)( 80,107)( 81,108);;
s4 := ( 1, 55)( 2, 56)( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)( 8, 62)
( 9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)( 16, 70)
( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)( 32, 86)
( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)( 40, 94)
( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
s5 := (109,110);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)( 11, 12)( 13, 16)( 14, 18)
( 15, 17)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 29, 30)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 40, 43)( 41, 45)( 42, 44)( 47, 48)( 49, 52)( 50, 54)
( 51, 53)( 56, 57)( 58, 61)( 59, 63)( 60, 62)( 65, 66)( 67, 70)( 68, 72)
( 69, 71)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 83, 84)( 85, 88)( 86, 90)
( 87, 89)( 92, 93)( 94, 97)( 95, 99)( 96, 98)(101,102)(103,106)(104,108)
(105,107);
s1 := Sym(110)!( 1, 5)( 2, 4)( 3, 6)( 7, 8)( 10, 14)( 11, 13)( 12, 15)
( 16, 17)( 19, 23)( 20, 22)( 21, 24)( 25, 26)( 28, 32)( 29, 31)( 30, 33)
( 34, 35)( 37, 41)( 38, 40)( 39, 42)( 43, 44)( 46, 50)( 47, 49)( 48, 51)
( 52, 53)( 55, 59)( 56, 58)( 57, 60)( 61, 62)( 64, 68)( 65, 67)( 66, 69)
( 70, 71)( 73, 77)( 74, 76)( 75, 78)( 79, 80)( 82, 86)( 83, 85)( 84, 87)
( 88, 89)( 91, 95)( 92, 94)( 93, 96)( 97, 98)(100,104)(101,103)(102,105)
(106,107);
s2 := Sym(110)!( 2, 3)( 5, 6)( 8, 9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)
( 14, 24)( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)
( 45, 53)( 56, 57)( 59, 60)( 62, 63)( 64, 73)( 65, 75)( 66, 74)( 67, 76)
( 68, 78)( 69, 77)( 70, 79)( 71, 81)( 72, 80)( 83, 84)( 86, 87)( 89, 90)
( 91,100)( 92,102)( 93,101)( 94,103)( 95,105)( 96,104)( 97,106)( 98,108)
( 99,107);
s3 := Sym(110)!( 1, 10)( 2, 11)( 3, 12)( 4, 13)( 5, 14)( 6, 15)( 7, 16)
( 8, 17)( 9, 18)( 28, 37)( 29, 38)( 30, 39)( 31, 40)( 32, 41)( 33, 42)
( 34, 43)( 35, 44)( 36, 45)( 55, 91)( 56, 92)( 57, 93)( 58, 94)( 59, 95)
( 60, 96)( 61, 97)( 62, 98)( 63, 99)( 64, 82)( 65, 83)( 66, 84)( 67, 85)
( 68, 86)( 69, 87)( 70, 88)( 71, 89)( 72, 90)( 73,100)( 74,101)( 75,102)
( 76,103)( 77,104)( 78,105)( 79,106)( 80,107)( 81,108);
s4 := Sym(110)!( 1, 55)( 2, 56)( 3, 57)( 4, 58)( 5, 59)( 6, 60)( 7, 61)
( 8, 62)( 9, 63)( 10, 64)( 11, 65)( 12, 66)( 13, 67)( 14, 68)( 15, 69)
( 16, 70)( 17, 71)( 18, 72)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 82)( 29, 83)( 30, 84)( 31, 85)
( 32, 86)( 33, 87)( 34, 88)( 35, 89)( 36, 90)( 37, 91)( 38, 92)( 39, 93)
( 40, 94)( 41, 95)( 42, 96)( 43, 97)( 44, 98)( 45, 99)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
s5 := Sym(110)!(109,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope