include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {16,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,6,3}*1728a
Also Known As : {{16,6|2},{6,3}6}. if this polytope has another name.
Group : SmallGroup(1728,5302)
Rank : 4
Schlafli Type : {16,6,3}
Number of vertices, edges, etc : 16, 144, 27, 9
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,6,3}*864a
3-fold quotients : {16,6,3}*576
4-fold quotients : {4,6,3}*432a
6-fold quotients : {8,6,3}*288
8-fold quotients : {2,6,3}*216
9-fold quotients : {16,2,3}*192
12-fold quotients : {4,6,3}*144
18-fold quotients : {8,2,3}*96
24-fold quotients : {2,6,3}*72
36-fold quotients : {4,2,3}*48
72-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,217)( 2,218)( 3,219)( 4,220)( 5,221)( 6,222)( 7,223)( 8,224)
( 9,225)( 10,226)( 11,227)( 12,228)( 13,229)( 14,230)( 15,231)( 16,232)
( 17,233)( 18,234)( 19,235)( 20,236)( 21,237)( 22,238)( 23,239)( 24,240)
( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)( 32,248)
( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)( 40,256)
( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)( 48,264)
( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,298)( 56,299)
( 57,300)( 58,301)( 59,302)( 60,303)( 61,304)( 62,305)( 63,306)( 64,307)
( 65,308)( 66,309)( 67,310)( 68,311)( 69,312)( 70,313)( 71,314)( 72,315)
( 73,316)( 74,317)( 75,318)( 76,319)( 77,320)( 78,321)( 79,322)( 80,323)
( 81,324)( 82,271)( 83,272)( 84,273)( 85,274)( 86,275)( 87,276)( 88,277)
( 89,278)( 90,279)( 91,280)( 92,281)( 93,282)( 94,283)( 95,284)( 96,285)
( 97,286)( 98,287)( 99,288)(100,289)(101,290)(102,291)(103,292)(104,293)
(105,294)(106,295)(107,296)(108,297)(109,379)(110,380)(111,381)(112,382)
(113,383)(114,384)(115,385)(116,386)(117,387)(118,388)(119,389)(120,390)
(121,391)(122,392)(123,393)(124,394)(125,395)(126,396)(127,397)(128,398)
(129,399)(130,400)(131,401)(132,402)(133,403)(134,404)(135,405)(136,406)
(137,407)(138,408)(139,409)(140,410)(141,411)(142,412)(143,413)(144,414)
(145,415)(146,416)(147,417)(148,418)(149,419)(150,420)(151,421)(152,422)
(153,423)(154,424)(155,425)(156,426)(157,427)(158,428)(159,429)(160,430)
(161,431)(162,432)(163,325)(164,326)(165,327)(166,328)(167,329)(168,330)
(169,331)(170,332)(171,333)(172,334)(173,335)(174,336)(175,337)(176,338)
(177,339)(178,340)(179,341)(180,342)(181,343)(182,344)(183,345)(184,346)
(185,347)(186,348)(187,349)(188,350)(189,351)(190,352)(191,353)(192,354)
(193,355)(194,356)(195,357)(196,358)(197,359)(198,360)(199,361)(200,362)
(201,363)(202,364)(203,365)(204,366)(205,367)(206,368)(207,369)(208,370)
(209,371)(210,372)(211,373)(212,374)(213,375)(214,376)(215,377)(216,378);;
s1 := ( 2, 3)( 5, 6)( 8, 9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)( 14, 24)
( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)( 37, 46)
( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)( 45, 53)
( 55, 82)( 56, 84)( 57, 83)( 58, 85)( 59, 87)( 60, 86)( 61, 88)( 62, 90)
( 63, 89)( 64,100)( 65,102)( 66,101)( 67,103)( 68,105)( 69,104)( 70,106)
( 71,108)( 72,107)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)
( 79, 97)( 80, 99)( 81, 98)(109,163)(110,165)(111,164)(112,166)(113,168)
(114,167)(115,169)(116,171)(117,170)(118,181)(119,183)(120,182)(121,184)
(122,186)(123,185)(124,187)(125,189)(126,188)(127,172)(128,174)(129,173)
(130,175)(131,177)(132,176)(133,178)(134,180)(135,179)(136,190)(137,192)
(138,191)(139,193)(140,195)(141,194)(142,196)(143,198)(144,197)(145,208)
(146,210)(147,209)(148,211)(149,213)(150,212)(151,214)(152,216)(153,215)
(154,199)(155,201)(156,200)(157,202)(158,204)(159,203)(160,205)(161,207)
(162,206)(217,325)(218,327)(219,326)(220,328)(221,330)(222,329)(223,331)
(224,333)(225,332)(226,343)(227,345)(228,344)(229,346)(230,348)(231,347)
(232,349)(233,351)(234,350)(235,334)(236,336)(237,335)(238,337)(239,339)
(240,338)(241,340)(242,342)(243,341)(244,352)(245,354)(246,353)(247,355)
(248,357)(249,356)(250,358)(251,360)(252,359)(253,370)(254,372)(255,371)
(256,373)(257,375)(258,374)(259,376)(260,378)(261,377)(262,361)(263,363)
(264,362)(265,364)(266,366)(267,365)(268,367)(269,369)(270,368)(271,406)
(272,408)(273,407)(274,409)(275,411)(276,410)(277,412)(278,414)(279,413)
(280,424)(281,426)(282,425)(283,427)(284,429)(285,428)(286,430)(287,432)
(288,431)(289,415)(290,417)(291,416)(292,418)(293,420)(294,419)(295,421)
(296,423)(297,422)(298,379)(299,381)(300,380)(301,382)(302,384)(303,383)
(304,385)(305,387)(306,386)(307,397)(308,399)(309,398)(310,400)(311,402)
(312,401)(313,403)(314,405)(315,404)(316,388)(317,390)(318,389)(319,391)
(320,393)(321,392)(322,394)(323,396)(324,395);;
s2 := ( 1, 10)( 2, 11)( 3, 12)( 4, 18)( 5, 16)( 6, 17)( 7, 14)( 8, 15)
( 9, 13)( 22, 27)( 23, 25)( 24, 26)( 28, 37)( 29, 38)( 30, 39)( 31, 45)
( 32, 43)( 33, 44)( 34, 41)( 35, 42)( 36, 40)( 49, 54)( 50, 52)( 51, 53)
( 55, 64)( 56, 65)( 57, 66)( 58, 72)( 59, 70)( 60, 71)( 61, 68)( 62, 69)
( 63, 67)( 76, 81)( 77, 79)( 78, 80)( 82, 91)( 83, 92)( 84, 93)( 85, 99)
( 86, 97)( 87, 98)( 88, 95)( 89, 96)( 90, 94)(103,108)(104,106)(105,107)
(109,118)(110,119)(111,120)(112,126)(113,124)(114,125)(115,122)(116,123)
(117,121)(130,135)(131,133)(132,134)(136,145)(137,146)(138,147)(139,153)
(140,151)(141,152)(142,149)(143,150)(144,148)(157,162)(158,160)(159,161)
(163,172)(164,173)(165,174)(166,180)(167,178)(168,179)(169,176)(170,177)
(171,175)(184,189)(185,187)(186,188)(190,199)(191,200)(192,201)(193,207)
(194,205)(195,206)(196,203)(197,204)(198,202)(211,216)(212,214)(213,215)
(217,226)(218,227)(219,228)(220,234)(221,232)(222,233)(223,230)(224,231)
(225,229)(238,243)(239,241)(240,242)(244,253)(245,254)(246,255)(247,261)
(248,259)(249,260)(250,257)(251,258)(252,256)(265,270)(266,268)(267,269)
(271,280)(272,281)(273,282)(274,288)(275,286)(276,287)(277,284)(278,285)
(279,283)(292,297)(293,295)(294,296)(298,307)(299,308)(300,309)(301,315)
(302,313)(303,314)(304,311)(305,312)(306,310)(319,324)(320,322)(321,323)
(325,334)(326,335)(327,336)(328,342)(329,340)(330,341)(331,338)(332,339)
(333,337)(346,351)(347,349)(348,350)(352,361)(353,362)(354,363)(355,369)
(356,367)(357,368)(358,365)(359,366)(360,364)(373,378)(374,376)(375,377)
(379,388)(380,389)(381,390)(382,396)(383,394)(384,395)(385,392)(386,393)
(387,391)(400,405)(401,403)(402,404)(406,415)(407,416)(408,417)(409,423)
(410,421)(411,422)(412,419)(413,420)(414,418)(427,432)(428,430)(429,431);;
s3 := ( 1, 4)( 2, 5)( 3, 6)( 10, 22)( 11, 23)( 12, 24)( 13, 19)( 14, 20)
( 15, 21)( 16, 25)( 17, 26)( 18, 27)( 28, 31)( 29, 32)( 30, 33)( 37, 49)
( 38, 50)( 39, 51)( 40, 46)( 41, 47)( 42, 48)( 43, 52)( 44, 53)( 45, 54)
( 55, 58)( 56, 59)( 57, 60)( 64, 76)( 65, 77)( 66, 78)( 67, 73)( 68, 74)
( 69, 75)( 70, 79)( 71, 80)( 72, 81)( 82, 85)( 83, 86)( 84, 87)( 91,103)
( 92,104)( 93,105)( 94,100)( 95,101)( 96,102)( 97,106)( 98,107)( 99,108)
(109,112)(110,113)(111,114)(118,130)(119,131)(120,132)(121,127)(122,128)
(123,129)(124,133)(125,134)(126,135)(136,139)(137,140)(138,141)(145,157)
(146,158)(147,159)(148,154)(149,155)(150,156)(151,160)(152,161)(153,162)
(163,166)(164,167)(165,168)(172,184)(173,185)(174,186)(175,181)(176,182)
(177,183)(178,187)(179,188)(180,189)(190,193)(191,194)(192,195)(199,211)
(200,212)(201,213)(202,208)(203,209)(204,210)(205,214)(206,215)(207,216)
(217,220)(218,221)(219,222)(226,238)(227,239)(228,240)(229,235)(230,236)
(231,237)(232,241)(233,242)(234,243)(244,247)(245,248)(246,249)(253,265)
(254,266)(255,267)(256,262)(257,263)(258,264)(259,268)(260,269)(261,270)
(271,274)(272,275)(273,276)(280,292)(281,293)(282,294)(283,289)(284,290)
(285,291)(286,295)(287,296)(288,297)(298,301)(299,302)(300,303)(307,319)
(308,320)(309,321)(310,316)(311,317)(312,318)(313,322)(314,323)(315,324)
(325,328)(326,329)(327,330)(334,346)(335,347)(336,348)(337,343)(338,344)
(339,345)(340,349)(341,350)(342,351)(352,355)(353,356)(354,357)(361,373)
(362,374)(363,375)(364,370)(365,371)(366,372)(367,376)(368,377)(369,378)
(379,382)(380,383)(381,384)(388,400)(389,401)(390,402)(391,397)(392,398)
(393,399)(394,403)(395,404)(396,405)(406,409)(407,410)(408,411)(415,427)
(416,428)(417,429)(418,424)(419,425)(420,426)(421,430)(422,431)(423,432);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(432)!( 1,217)( 2,218)( 3,219)( 4,220)( 5,221)( 6,222)( 7,223)
( 8,224)( 9,225)( 10,226)( 11,227)( 12,228)( 13,229)( 14,230)( 15,231)
( 16,232)( 17,233)( 18,234)( 19,235)( 20,236)( 21,237)( 22,238)( 23,239)
( 24,240)( 25,241)( 26,242)( 27,243)( 28,244)( 29,245)( 30,246)( 31,247)
( 32,248)( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)
( 40,256)( 41,257)( 42,258)( 43,259)( 44,260)( 45,261)( 46,262)( 47,263)
( 48,264)( 49,265)( 50,266)( 51,267)( 52,268)( 53,269)( 54,270)( 55,298)
( 56,299)( 57,300)( 58,301)( 59,302)( 60,303)( 61,304)( 62,305)( 63,306)
( 64,307)( 65,308)( 66,309)( 67,310)( 68,311)( 69,312)( 70,313)( 71,314)
( 72,315)( 73,316)( 74,317)( 75,318)( 76,319)( 77,320)( 78,321)( 79,322)
( 80,323)( 81,324)( 82,271)( 83,272)( 84,273)( 85,274)( 86,275)( 87,276)
( 88,277)( 89,278)( 90,279)( 91,280)( 92,281)( 93,282)( 94,283)( 95,284)
( 96,285)( 97,286)( 98,287)( 99,288)(100,289)(101,290)(102,291)(103,292)
(104,293)(105,294)(106,295)(107,296)(108,297)(109,379)(110,380)(111,381)
(112,382)(113,383)(114,384)(115,385)(116,386)(117,387)(118,388)(119,389)
(120,390)(121,391)(122,392)(123,393)(124,394)(125,395)(126,396)(127,397)
(128,398)(129,399)(130,400)(131,401)(132,402)(133,403)(134,404)(135,405)
(136,406)(137,407)(138,408)(139,409)(140,410)(141,411)(142,412)(143,413)
(144,414)(145,415)(146,416)(147,417)(148,418)(149,419)(150,420)(151,421)
(152,422)(153,423)(154,424)(155,425)(156,426)(157,427)(158,428)(159,429)
(160,430)(161,431)(162,432)(163,325)(164,326)(165,327)(166,328)(167,329)
(168,330)(169,331)(170,332)(171,333)(172,334)(173,335)(174,336)(175,337)
(176,338)(177,339)(178,340)(179,341)(180,342)(181,343)(182,344)(183,345)
(184,346)(185,347)(186,348)(187,349)(188,350)(189,351)(190,352)(191,353)
(192,354)(193,355)(194,356)(195,357)(196,358)(197,359)(198,360)(199,361)
(200,362)(201,363)(202,364)(203,365)(204,366)(205,367)(206,368)(207,369)
(208,370)(209,371)(210,372)(211,373)(212,374)(213,375)(214,376)(215,377)
(216,378);
s1 := Sym(432)!( 2, 3)( 5, 6)( 8, 9)( 10, 19)( 11, 21)( 12, 20)( 13, 22)
( 14, 24)( 15, 23)( 16, 25)( 17, 27)( 18, 26)( 29, 30)( 32, 33)( 35, 36)
( 37, 46)( 38, 48)( 39, 47)( 40, 49)( 41, 51)( 42, 50)( 43, 52)( 44, 54)
( 45, 53)( 55, 82)( 56, 84)( 57, 83)( 58, 85)( 59, 87)( 60, 86)( 61, 88)
( 62, 90)( 63, 89)( 64,100)( 65,102)( 66,101)( 67,103)( 68,105)( 69,104)
( 70,106)( 71,108)( 72,107)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)
( 78, 95)( 79, 97)( 80, 99)( 81, 98)(109,163)(110,165)(111,164)(112,166)
(113,168)(114,167)(115,169)(116,171)(117,170)(118,181)(119,183)(120,182)
(121,184)(122,186)(123,185)(124,187)(125,189)(126,188)(127,172)(128,174)
(129,173)(130,175)(131,177)(132,176)(133,178)(134,180)(135,179)(136,190)
(137,192)(138,191)(139,193)(140,195)(141,194)(142,196)(143,198)(144,197)
(145,208)(146,210)(147,209)(148,211)(149,213)(150,212)(151,214)(152,216)
(153,215)(154,199)(155,201)(156,200)(157,202)(158,204)(159,203)(160,205)
(161,207)(162,206)(217,325)(218,327)(219,326)(220,328)(221,330)(222,329)
(223,331)(224,333)(225,332)(226,343)(227,345)(228,344)(229,346)(230,348)
(231,347)(232,349)(233,351)(234,350)(235,334)(236,336)(237,335)(238,337)
(239,339)(240,338)(241,340)(242,342)(243,341)(244,352)(245,354)(246,353)
(247,355)(248,357)(249,356)(250,358)(251,360)(252,359)(253,370)(254,372)
(255,371)(256,373)(257,375)(258,374)(259,376)(260,378)(261,377)(262,361)
(263,363)(264,362)(265,364)(266,366)(267,365)(268,367)(269,369)(270,368)
(271,406)(272,408)(273,407)(274,409)(275,411)(276,410)(277,412)(278,414)
(279,413)(280,424)(281,426)(282,425)(283,427)(284,429)(285,428)(286,430)
(287,432)(288,431)(289,415)(290,417)(291,416)(292,418)(293,420)(294,419)
(295,421)(296,423)(297,422)(298,379)(299,381)(300,380)(301,382)(302,384)
(303,383)(304,385)(305,387)(306,386)(307,397)(308,399)(309,398)(310,400)
(311,402)(312,401)(313,403)(314,405)(315,404)(316,388)(317,390)(318,389)
(319,391)(320,393)(321,392)(322,394)(323,396)(324,395);
s2 := Sym(432)!( 1, 10)( 2, 11)( 3, 12)( 4, 18)( 5, 16)( 6, 17)( 7, 14)
( 8, 15)( 9, 13)( 22, 27)( 23, 25)( 24, 26)( 28, 37)( 29, 38)( 30, 39)
( 31, 45)( 32, 43)( 33, 44)( 34, 41)( 35, 42)( 36, 40)( 49, 54)( 50, 52)
( 51, 53)( 55, 64)( 56, 65)( 57, 66)( 58, 72)( 59, 70)( 60, 71)( 61, 68)
( 62, 69)( 63, 67)( 76, 81)( 77, 79)( 78, 80)( 82, 91)( 83, 92)( 84, 93)
( 85, 99)( 86, 97)( 87, 98)( 88, 95)( 89, 96)( 90, 94)(103,108)(104,106)
(105,107)(109,118)(110,119)(111,120)(112,126)(113,124)(114,125)(115,122)
(116,123)(117,121)(130,135)(131,133)(132,134)(136,145)(137,146)(138,147)
(139,153)(140,151)(141,152)(142,149)(143,150)(144,148)(157,162)(158,160)
(159,161)(163,172)(164,173)(165,174)(166,180)(167,178)(168,179)(169,176)
(170,177)(171,175)(184,189)(185,187)(186,188)(190,199)(191,200)(192,201)
(193,207)(194,205)(195,206)(196,203)(197,204)(198,202)(211,216)(212,214)
(213,215)(217,226)(218,227)(219,228)(220,234)(221,232)(222,233)(223,230)
(224,231)(225,229)(238,243)(239,241)(240,242)(244,253)(245,254)(246,255)
(247,261)(248,259)(249,260)(250,257)(251,258)(252,256)(265,270)(266,268)
(267,269)(271,280)(272,281)(273,282)(274,288)(275,286)(276,287)(277,284)
(278,285)(279,283)(292,297)(293,295)(294,296)(298,307)(299,308)(300,309)
(301,315)(302,313)(303,314)(304,311)(305,312)(306,310)(319,324)(320,322)
(321,323)(325,334)(326,335)(327,336)(328,342)(329,340)(330,341)(331,338)
(332,339)(333,337)(346,351)(347,349)(348,350)(352,361)(353,362)(354,363)
(355,369)(356,367)(357,368)(358,365)(359,366)(360,364)(373,378)(374,376)
(375,377)(379,388)(380,389)(381,390)(382,396)(383,394)(384,395)(385,392)
(386,393)(387,391)(400,405)(401,403)(402,404)(406,415)(407,416)(408,417)
(409,423)(410,421)(411,422)(412,419)(413,420)(414,418)(427,432)(428,430)
(429,431);
s3 := Sym(432)!( 1, 4)( 2, 5)( 3, 6)( 10, 22)( 11, 23)( 12, 24)( 13, 19)
( 14, 20)( 15, 21)( 16, 25)( 17, 26)( 18, 27)( 28, 31)( 29, 32)( 30, 33)
( 37, 49)( 38, 50)( 39, 51)( 40, 46)( 41, 47)( 42, 48)( 43, 52)( 44, 53)
( 45, 54)( 55, 58)( 56, 59)( 57, 60)( 64, 76)( 65, 77)( 66, 78)( 67, 73)
( 68, 74)( 69, 75)( 70, 79)( 71, 80)( 72, 81)( 82, 85)( 83, 86)( 84, 87)
( 91,103)( 92,104)( 93,105)( 94,100)( 95,101)( 96,102)( 97,106)( 98,107)
( 99,108)(109,112)(110,113)(111,114)(118,130)(119,131)(120,132)(121,127)
(122,128)(123,129)(124,133)(125,134)(126,135)(136,139)(137,140)(138,141)
(145,157)(146,158)(147,159)(148,154)(149,155)(150,156)(151,160)(152,161)
(153,162)(163,166)(164,167)(165,168)(172,184)(173,185)(174,186)(175,181)
(176,182)(177,183)(178,187)(179,188)(180,189)(190,193)(191,194)(192,195)
(199,211)(200,212)(201,213)(202,208)(203,209)(204,210)(205,214)(206,215)
(207,216)(217,220)(218,221)(219,222)(226,238)(227,239)(228,240)(229,235)
(230,236)(231,237)(232,241)(233,242)(234,243)(244,247)(245,248)(246,249)
(253,265)(254,266)(255,267)(256,262)(257,263)(258,264)(259,268)(260,269)
(261,270)(271,274)(272,275)(273,276)(280,292)(281,293)(282,294)(283,289)
(284,290)(285,291)(286,295)(287,296)(288,297)(298,301)(299,302)(300,303)
(307,319)(308,320)(309,321)(310,316)(311,317)(312,318)(313,322)(314,323)
(315,324)(325,328)(326,329)(327,330)(334,346)(335,347)(336,348)(337,343)
(338,344)(339,345)(340,349)(341,350)(342,351)(352,355)(353,356)(354,357)
(361,373)(362,374)(363,375)(364,370)(365,371)(366,372)(367,376)(368,377)
(369,378)(379,382)(380,383)(381,384)(388,400)(389,401)(390,402)(391,397)
(392,398)(393,399)(394,403)(395,404)(396,405)(406,409)(407,410)(408,411)
(415,427)(416,428)(417,429)(418,424)(419,425)(420,426)(421,430)(422,431)
(423,432);
poly := sub<Sym(432)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope