Polytope of Type {2,436}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,436}*1744
if this polytope has a name.
Group : SmallGroup(1744,36)
Rank : 3
Schlafli Type : {2,436}
Number of vertices, edges, etc : 2, 436, 436
Order of s0s1s2 : 436
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,218}*872
   4-fold quotients : {2,109}*436
   109-fold quotients : {2,4}*16
   218-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,111)(  5,110)(  6,109)(  7,108)(  8,107)(  9,106)( 10,105)( 11,104)
( 12,103)( 13,102)( 14,101)( 15,100)( 16, 99)( 17, 98)( 18, 97)( 19, 96)
( 20, 95)( 21, 94)( 22, 93)( 23, 92)( 24, 91)( 25, 90)( 26, 89)( 27, 88)
( 28, 87)( 29, 86)( 30, 85)( 31, 84)( 32, 83)( 33, 82)( 34, 81)( 35, 80)
( 36, 79)( 37, 78)( 38, 77)( 39, 76)( 40, 75)( 41, 74)( 42, 73)( 43, 72)
( 44, 71)( 45, 70)( 46, 69)( 47, 68)( 48, 67)( 49, 66)( 50, 65)( 51, 64)
( 52, 63)( 53, 62)( 54, 61)( 55, 60)( 56, 59)( 57, 58)(113,220)(114,219)
(115,218)(116,217)(117,216)(118,215)(119,214)(120,213)(121,212)(122,211)
(123,210)(124,209)(125,208)(126,207)(127,206)(128,205)(129,204)(130,203)
(131,202)(132,201)(133,200)(134,199)(135,198)(136,197)(137,196)(138,195)
(139,194)(140,193)(141,192)(142,191)(143,190)(144,189)(145,188)(146,187)
(147,186)(148,185)(149,184)(150,183)(151,182)(152,181)(153,180)(154,179)
(155,178)(156,177)(157,176)(158,175)(159,174)(160,173)(161,172)(162,171)
(163,170)(164,169)(165,168)(166,167)(221,330)(222,438)(223,437)(224,436)
(225,435)(226,434)(227,433)(228,432)(229,431)(230,430)(231,429)(232,428)
(233,427)(234,426)(235,425)(236,424)(237,423)(238,422)(239,421)(240,420)
(241,419)(242,418)(243,417)(244,416)(245,415)(246,414)(247,413)(248,412)
(249,411)(250,410)(251,409)(252,408)(253,407)(254,406)(255,405)(256,404)
(257,403)(258,402)(259,401)(260,400)(261,399)(262,398)(263,397)(264,396)
(265,395)(266,394)(267,393)(268,392)(269,391)(270,390)(271,389)(272,388)
(273,387)(274,386)(275,385)(276,384)(277,383)(278,382)(279,381)(280,380)
(281,379)(282,378)(283,377)(284,376)(285,375)(286,374)(287,373)(288,372)
(289,371)(290,370)(291,369)(292,368)(293,367)(294,366)(295,365)(296,364)
(297,363)(298,362)(299,361)(300,360)(301,359)(302,358)(303,357)(304,356)
(305,355)(306,354)(307,353)(308,352)(309,351)(310,350)(311,349)(312,348)
(313,347)(314,346)(315,345)(316,344)(317,343)(318,342)(319,341)(320,340)
(321,339)(322,338)(323,337)(324,336)(325,335)(326,334)(327,333)(328,332)
(329,331);;
s2 := (  3,222)(  4,221)(  5,329)(  6,328)(  7,327)(  8,326)(  9,325)( 10,324)
( 11,323)( 12,322)( 13,321)( 14,320)( 15,319)( 16,318)( 17,317)( 18,316)
( 19,315)( 20,314)( 21,313)( 22,312)( 23,311)( 24,310)( 25,309)( 26,308)
( 27,307)( 28,306)( 29,305)( 30,304)( 31,303)( 32,302)( 33,301)( 34,300)
( 35,299)( 36,298)( 37,297)( 38,296)( 39,295)( 40,294)( 41,293)( 42,292)
( 43,291)( 44,290)( 45,289)( 46,288)( 47,287)( 48,286)( 49,285)( 50,284)
( 51,283)( 52,282)( 53,281)( 54,280)( 55,279)( 56,278)( 57,277)( 58,276)
( 59,275)( 60,274)( 61,273)( 62,272)( 63,271)( 64,270)( 65,269)( 66,268)
( 67,267)( 68,266)( 69,265)( 70,264)( 71,263)( 72,262)( 73,261)( 74,260)
( 75,259)( 76,258)( 77,257)( 78,256)( 79,255)( 80,254)( 81,253)( 82,252)
( 83,251)( 84,250)( 85,249)( 86,248)( 87,247)( 88,246)( 89,245)( 90,244)
( 91,243)( 92,242)( 93,241)( 94,240)( 95,239)( 96,238)( 97,237)( 98,236)
( 99,235)(100,234)(101,233)(102,232)(103,231)(104,230)(105,229)(106,228)
(107,227)(108,226)(109,225)(110,224)(111,223)(112,331)(113,330)(114,438)
(115,437)(116,436)(117,435)(118,434)(119,433)(120,432)(121,431)(122,430)
(123,429)(124,428)(125,427)(126,426)(127,425)(128,424)(129,423)(130,422)
(131,421)(132,420)(133,419)(134,418)(135,417)(136,416)(137,415)(138,414)
(139,413)(140,412)(141,411)(142,410)(143,409)(144,408)(145,407)(146,406)
(147,405)(148,404)(149,403)(150,402)(151,401)(152,400)(153,399)(154,398)
(155,397)(156,396)(157,395)(158,394)(159,393)(160,392)(161,391)(162,390)
(163,389)(164,388)(165,387)(166,386)(167,385)(168,384)(169,383)(170,382)
(171,381)(172,380)(173,379)(174,378)(175,377)(176,376)(177,375)(178,374)
(179,373)(180,372)(181,371)(182,370)(183,369)(184,368)(185,367)(186,366)
(187,365)(188,364)(189,363)(190,362)(191,361)(192,360)(193,359)(194,358)
(195,357)(196,356)(197,355)(198,354)(199,353)(200,352)(201,351)(202,350)
(203,349)(204,348)(205,347)(206,346)(207,345)(208,344)(209,343)(210,342)
(211,341)(212,340)(213,339)(214,338)(215,337)(216,336)(217,335)(218,334)
(219,333)(220,332);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(438)!(1,2);
s1 := Sym(438)!(  4,111)(  5,110)(  6,109)(  7,108)(  8,107)(  9,106)( 10,105)
( 11,104)( 12,103)( 13,102)( 14,101)( 15,100)( 16, 99)( 17, 98)( 18, 97)
( 19, 96)( 20, 95)( 21, 94)( 22, 93)( 23, 92)( 24, 91)( 25, 90)( 26, 89)
( 27, 88)( 28, 87)( 29, 86)( 30, 85)( 31, 84)( 32, 83)( 33, 82)( 34, 81)
( 35, 80)( 36, 79)( 37, 78)( 38, 77)( 39, 76)( 40, 75)( 41, 74)( 42, 73)
( 43, 72)( 44, 71)( 45, 70)( 46, 69)( 47, 68)( 48, 67)( 49, 66)( 50, 65)
( 51, 64)( 52, 63)( 53, 62)( 54, 61)( 55, 60)( 56, 59)( 57, 58)(113,220)
(114,219)(115,218)(116,217)(117,216)(118,215)(119,214)(120,213)(121,212)
(122,211)(123,210)(124,209)(125,208)(126,207)(127,206)(128,205)(129,204)
(130,203)(131,202)(132,201)(133,200)(134,199)(135,198)(136,197)(137,196)
(138,195)(139,194)(140,193)(141,192)(142,191)(143,190)(144,189)(145,188)
(146,187)(147,186)(148,185)(149,184)(150,183)(151,182)(152,181)(153,180)
(154,179)(155,178)(156,177)(157,176)(158,175)(159,174)(160,173)(161,172)
(162,171)(163,170)(164,169)(165,168)(166,167)(221,330)(222,438)(223,437)
(224,436)(225,435)(226,434)(227,433)(228,432)(229,431)(230,430)(231,429)
(232,428)(233,427)(234,426)(235,425)(236,424)(237,423)(238,422)(239,421)
(240,420)(241,419)(242,418)(243,417)(244,416)(245,415)(246,414)(247,413)
(248,412)(249,411)(250,410)(251,409)(252,408)(253,407)(254,406)(255,405)
(256,404)(257,403)(258,402)(259,401)(260,400)(261,399)(262,398)(263,397)
(264,396)(265,395)(266,394)(267,393)(268,392)(269,391)(270,390)(271,389)
(272,388)(273,387)(274,386)(275,385)(276,384)(277,383)(278,382)(279,381)
(280,380)(281,379)(282,378)(283,377)(284,376)(285,375)(286,374)(287,373)
(288,372)(289,371)(290,370)(291,369)(292,368)(293,367)(294,366)(295,365)
(296,364)(297,363)(298,362)(299,361)(300,360)(301,359)(302,358)(303,357)
(304,356)(305,355)(306,354)(307,353)(308,352)(309,351)(310,350)(311,349)
(312,348)(313,347)(314,346)(315,345)(316,344)(317,343)(318,342)(319,341)
(320,340)(321,339)(322,338)(323,337)(324,336)(325,335)(326,334)(327,333)
(328,332)(329,331);
s2 := Sym(438)!(  3,222)(  4,221)(  5,329)(  6,328)(  7,327)(  8,326)(  9,325)
( 10,324)( 11,323)( 12,322)( 13,321)( 14,320)( 15,319)( 16,318)( 17,317)
( 18,316)( 19,315)( 20,314)( 21,313)( 22,312)( 23,311)( 24,310)( 25,309)
( 26,308)( 27,307)( 28,306)( 29,305)( 30,304)( 31,303)( 32,302)( 33,301)
( 34,300)( 35,299)( 36,298)( 37,297)( 38,296)( 39,295)( 40,294)( 41,293)
( 42,292)( 43,291)( 44,290)( 45,289)( 46,288)( 47,287)( 48,286)( 49,285)
( 50,284)( 51,283)( 52,282)( 53,281)( 54,280)( 55,279)( 56,278)( 57,277)
( 58,276)( 59,275)( 60,274)( 61,273)( 62,272)( 63,271)( 64,270)( 65,269)
( 66,268)( 67,267)( 68,266)( 69,265)( 70,264)( 71,263)( 72,262)( 73,261)
( 74,260)( 75,259)( 76,258)( 77,257)( 78,256)( 79,255)( 80,254)( 81,253)
( 82,252)( 83,251)( 84,250)( 85,249)( 86,248)( 87,247)( 88,246)( 89,245)
( 90,244)( 91,243)( 92,242)( 93,241)( 94,240)( 95,239)( 96,238)( 97,237)
( 98,236)( 99,235)(100,234)(101,233)(102,232)(103,231)(104,230)(105,229)
(106,228)(107,227)(108,226)(109,225)(110,224)(111,223)(112,331)(113,330)
(114,438)(115,437)(116,436)(117,435)(118,434)(119,433)(120,432)(121,431)
(122,430)(123,429)(124,428)(125,427)(126,426)(127,425)(128,424)(129,423)
(130,422)(131,421)(132,420)(133,419)(134,418)(135,417)(136,416)(137,415)
(138,414)(139,413)(140,412)(141,411)(142,410)(143,409)(144,408)(145,407)
(146,406)(147,405)(148,404)(149,403)(150,402)(151,401)(152,400)(153,399)
(154,398)(155,397)(156,396)(157,395)(158,394)(159,393)(160,392)(161,391)
(162,390)(163,389)(164,388)(165,387)(166,386)(167,385)(168,384)(169,383)
(170,382)(171,381)(172,380)(173,379)(174,378)(175,377)(176,376)(177,375)
(178,374)(179,373)(180,372)(181,371)(182,370)(183,369)(184,368)(185,367)
(186,366)(187,365)(188,364)(189,363)(190,362)(191,361)(192,360)(193,359)
(194,358)(195,357)(196,356)(197,355)(198,354)(199,353)(200,352)(201,351)
(202,350)(203,349)(204,348)(205,347)(206,346)(207,345)(208,344)(209,343)
(210,342)(211,341)(212,340)(213,339)(214,338)(215,337)(216,336)(217,335)
(218,334)(219,333)(220,332);
poly := sub<Sym(438)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope