Polytope of Type {436,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {436,2}*1744
if this polytope has a name.
Group : SmallGroup(1744,36)
Rank : 3
Schlafli Type : {436,2}
Number of vertices, edges, etc : 436, 436, 2
Order of s0s1s2 : 436
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {218,2}*872
   4-fold quotients : {109,2}*436
   109-fold quotients : {4,2}*16
   218-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2,109)(  3,108)(  4,107)(  5,106)(  6,105)(  7,104)(  8,103)(  9,102)
( 10,101)( 11,100)( 12, 99)( 13, 98)( 14, 97)( 15, 96)( 16, 95)( 17, 94)
( 18, 93)( 19, 92)( 20, 91)( 21, 90)( 22, 89)( 23, 88)( 24, 87)( 25, 86)
( 26, 85)( 27, 84)( 28, 83)( 29, 82)( 30, 81)( 31, 80)( 32, 79)( 33, 78)
( 34, 77)( 35, 76)( 36, 75)( 37, 74)( 38, 73)( 39, 72)( 40, 71)( 41, 70)
( 42, 69)( 43, 68)( 44, 67)( 45, 66)( 46, 65)( 47, 64)( 48, 63)( 49, 62)
( 50, 61)( 51, 60)( 52, 59)( 53, 58)( 54, 57)( 55, 56)(111,218)(112,217)
(113,216)(114,215)(115,214)(116,213)(117,212)(118,211)(119,210)(120,209)
(121,208)(122,207)(123,206)(124,205)(125,204)(126,203)(127,202)(128,201)
(129,200)(130,199)(131,198)(132,197)(133,196)(134,195)(135,194)(136,193)
(137,192)(138,191)(139,190)(140,189)(141,188)(142,187)(143,186)(144,185)
(145,184)(146,183)(147,182)(148,181)(149,180)(150,179)(151,178)(152,177)
(153,176)(154,175)(155,174)(156,173)(157,172)(158,171)(159,170)(160,169)
(161,168)(162,167)(163,166)(164,165)(219,328)(220,436)(221,435)(222,434)
(223,433)(224,432)(225,431)(226,430)(227,429)(228,428)(229,427)(230,426)
(231,425)(232,424)(233,423)(234,422)(235,421)(236,420)(237,419)(238,418)
(239,417)(240,416)(241,415)(242,414)(243,413)(244,412)(245,411)(246,410)
(247,409)(248,408)(249,407)(250,406)(251,405)(252,404)(253,403)(254,402)
(255,401)(256,400)(257,399)(258,398)(259,397)(260,396)(261,395)(262,394)
(263,393)(264,392)(265,391)(266,390)(267,389)(268,388)(269,387)(270,386)
(271,385)(272,384)(273,383)(274,382)(275,381)(276,380)(277,379)(278,378)
(279,377)(280,376)(281,375)(282,374)(283,373)(284,372)(285,371)(286,370)
(287,369)(288,368)(289,367)(290,366)(291,365)(292,364)(293,363)(294,362)
(295,361)(296,360)(297,359)(298,358)(299,357)(300,356)(301,355)(302,354)
(303,353)(304,352)(305,351)(306,350)(307,349)(308,348)(309,347)(310,346)
(311,345)(312,344)(313,343)(314,342)(315,341)(316,340)(317,339)(318,338)
(319,337)(320,336)(321,335)(322,334)(323,333)(324,332)(325,331)(326,330)
(327,329);;
s1 := (  1,220)(  2,219)(  3,327)(  4,326)(  5,325)(  6,324)(  7,323)(  8,322)
(  9,321)( 10,320)( 11,319)( 12,318)( 13,317)( 14,316)( 15,315)( 16,314)
( 17,313)( 18,312)( 19,311)( 20,310)( 21,309)( 22,308)( 23,307)( 24,306)
( 25,305)( 26,304)( 27,303)( 28,302)( 29,301)( 30,300)( 31,299)( 32,298)
( 33,297)( 34,296)( 35,295)( 36,294)( 37,293)( 38,292)( 39,291)( 40,290)
( 41,289)( 42,288)( 43,287)( 44,286)( 45,285)( 46,284)( 47,283)( 48,282)
( 49,281)( 50,280)( 51,279)( 52,278)( 53,277)( 54,276)( 55,275)( 56,274)
( 57,273)( 58,272)( 59,271)( 60,270)( 61,269)( 62,268)( 63,267)( 64,266)
( 65,265)( 66,264)( 67,263)( 68,262)( 69,261)( 70,260)( 71,259)( 72,258)
( 73,257)( 74,256)( 75,255)( 76,254)( 77,253)( 78,252)( 79,251)( 80,250)
( 81,249)( 82,248)( 83,247)( 84,246)( 85,245)( 86,244)( 87,243)( 88,242)
( 89,241)( 90,240)( 91,239)( 92,238)( 93,237)( 94,236)( 95,235)( 96,234)
( 97,233)( 98,232)( 99,231)(100,230)(101,229)(102,228)(103,227)(104,226)
(105,225)(106,224)(107,223)(108,222)(109,221)(110,329)(111,328)(112,436)
(113,435)(114,434)(115,433)(116,432)(117,431)(118,430)(119,429)(120,428)
(121,427)(122,426)(123,425)(124,424)(125,423)(126,422)(127,421)(128,420)
(129,419)(130,418)(131,417)(132,416)(133,415)(134,414)(135,413)(136,412)
(137,411)(138,410)(139,409)(140,408)(141,407)(142,406)(143,405)(144,404)
(145,403)(146,402)(147,401)(148,400)(149,399)(150,398)(151,397)(152,396)
(153,395)(154,394)(155,393)(156,392)(157,391)(158,390)(159,389)(160,388)
(161,387)(162,386)(163,385)(164,384)(165,383)(166,382)(167,381)(168,380)
(169,379)(170,378)(171,377)(172,376)(173,375)(174,374)(175,373)(176,372)
(177,371)(178,370)(179,369)(180,368)(181,367)(182,366)(183,365)(184,364)
(185,363)(186,362)(187,361)(188,360)(189,359)(190,358)(191,357)(192,356)
(193,355)(194,354)(195,353)(196,352)(197,351)(198,350)(199,349)(200,348)
(201,347)(202,346)(203,345)(204,344)(205,343)(206,342)(207,341)(208,340)
(209,339)(210,338)(211,337)(212,336)(213,335)(214,334)(215,333)(216,332)
(217,331)(218,330);;
s2 := (437,438);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(438)!(  2,109)(  3,108)(  4,107)(  5,106)(  6,105)(  7,104)(  8,103)
(  9,102)( 10,101)( 11,100)( 12, 99)( 13, 98)( 14, 97)( 15, 96)( 16, 95)
( 17, 94)( 18, 93)( 19, 92)( 20, 91)( 21, 90)( 22, 89)( 23, 88)( 24, 87)
( 25, 86)( 26, 85)( 27, 84)( 28, 83)( 29, 82)( 30, 81)( 31, 80)( 32, 79)
( 33, 78)( 34, 77)( 35, 76)( 36, 75)( 37, 74)( 38, 73)( 39, 72)( 40, 71)
( 41, 70)( 42, 69)( 43, 68)( 44, 67)( 45, 66)( 46, 65)( 47, 64)( 48, 63)
( 49, 62)( 50, 61)( 51, 60)( 52, 59)( 53, 58)( 54, 57)( 55, 56)(111,218)
(112,217)(113,216)(114,215)(115,214)(116,213)(117,212)(118,211)(119,210)
(120,209)(121,208)(122,207)(123,206)(124,205)(125,204)(126,203)(127,202)
(128,201)(129,200)(130,199)(131,198)(132,197)(133,196)(134,195)(135,194)
(136,193)(137,192)(138,191)(139,190)(140,189)(141,188)(142,187)(143,186)
(144,185)(145,184)(146,183)(147,182)(148,181)(149,180)(150,179)(151,178)
(152,177)(153,176)(154,175)(155,174)(156,173)(157,172)(158,171)(159,170)
(160,169)(161,168)(162,167)(163,166)(164,165)(219,328)(220,436)(221,435)
(222,434)(223,433)(224,432)(225,431)(226,430)(227,429)(228,428)(229,427)
(230,426)(231,425)(232,424)(233,423)(234,422)(235,421)(236,420)(237,419)
(238,418)(239,417)(240,416)(241,415)(242,414)(243,413)(244,412)(245,411)
(246,410)(247,409)(248,408)(249,407)(250,406)(251,405)(252,404)(253,403)
(254,402)(255,401)(256,400)(257,399)(258,398)(259,397)(260,396)(261,395)
(262,394)(263,393)(264,392)(265,391)(266,390)(267,389)(268,388)(269,387)
(270,386)(271,385)(272,384)(273,383)(274,382)(275,381)(276,380)(277,379)
(278,378)(279,377)(280,376)(281,375)(282,374)(283,373)(284,372)(285,371)
(286,370)(287,369)(288,368)(289,367)(290,366)(291,365)(292,364)(293,363)
(294,362)(295,361)(296,360)(297,359)(298,358)(299,357)(300,356)(301,355)
(302,354)(303,353)(304,352)(305,351)(306,350)(307,349)(308,348)(309,347)
(310,346)(311,345)(312,344)(313,343)(314,342)(315,341)(316,340)(317,339)
(318,338)(319,337)(320,336)(321,335)(322,334)(323,333)(324,332)(325,331)
(326,330)(327,329);
s1 := Sym(438)!(  1,220)(  2,219)(  3,327)(  4,326)(  5,325)(  6,324)(  7,323)
(  8,322)(  9,321)( 10,320)( 11,319)( 12,318)( 13,317)( 14,316)( 15,315)
( 16,314)( 17,313)( 18,312)( 19,311)( 20,310)( 21,309)( 22,308)( 23,307)
( 24,306)( 25,305)( 26,304)( 27,303)( 28,302)( 29,301)( 30,300)( 31,299)
( 32,298)( 33,297)( 34,296)( 35,295)( 36,294)( 37,293)( 38,292)( 39,291)
( 40,290)( 41,289)( 42,288)( 43,287)( 44,286)( 45,285)( 46,284)( 47,283)
( 48,282)( 49,281)( 50,280)( 51,279)( 52,278)( 53,277)( 54,276)( 55,275)
( 56,274)( 57,273)( 58,272)( 59,271)( 60,270)( 61,269)( 62,268)( 63,267)
( 64,266)( 65,265)( 66,264)( 67,263)( 68,262)( 69,261)( 70,260)( 71,259)
( 72,258)( 73,257)( 74,256)( 75,255)( 76,254)( 77,253)( 78,252)( 79,251)
( 80,250)( 81,249)( 82,248)( 83,247)( 84,246)( 85,245)( 86,244)( 87,243)
( 88,242)( 89,241)( 90,240)( 91,239)( 92,238)( 93,237)( 94,236)( 95,235)
( 96,234)( 97,233)( 98,232)( 99,231)(100,230)(101,229)(102,228)(103,227)
(104,226)(105,225)(106,224)(107,223)(108,222)(109,221)(110,329)(111,328)
(112,436)(113,435)(114,434)(115,433)(116,432)(117,431)(118,430)(119,429)
(120,428)(121,427)(122,426)(123,425)(124,424)(125,423)(126,422)(127,421)
(128,420)(129,419)(130,418)(131,417)(132,416)(133,415)(134,414)(135,413)
(136,412)(137,411)(138,410)(139,409)(140,408)(141,407)(142,406)(143,405)
(144,404)(145,403)(146,402)(147,401)(148,400)(149,399)(150,398)(151,397)
(152,396)(153,395)(154,394)(155,393)(156,392)(157,391)(158,390)(159,389)
(160,388)(161,387)(162,386)(163,385)(164,384)(165,383)(166,382)(167,381)
(168,380)(169,379)(170,378)(171,377)(172,376)(173,375)(174,374)(175,373)
(176,372)(177,371)(178,370)(179,369)(180,368)(181,367)(182,366)(183,365)
(184,364)(185,363)(186,362)(187,361)(188,360)(189,359)(190,358)(191,357)
(192,356)(193,355)(194,354)(195,353)(196,352)(197,351)(198,350)(199,349)
(200,348)(201,347)(202,346)(203,345)(204,344)(205,343)(206,342)(207,341)
(208,340)(209,339)(210,338)(211,337)(212,336)(213,335)(214,334)(215,333)
(216,332)(217,331)(218,330);
s2 := Sym(438)!(437,438);
poly := sub<Sym(438)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope