include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {22,2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {22,2,20}*1760
if this polytope has a name.
Group : SmallGroup(1760,1180)
Rank : 4
Schlafli Type : {22,2,20}
Number of vertices, edges, etc : 22, 22, 20, 20
Order of s0s1s2s3 : 220
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {11,2,20}*880, {22,2,10}*880
4-fold quotients : {11,2,10}*440, {22,2,5}*440
5-fold quotients : {22,2,4}*352
8-fold quotients : {11,2,5}*220
10-fold quotients : {11,2,4}*176, {22,2,2}*176
11-fold quotients : {2,2,20}*160
20-fold quotients : {11,2,2}*88
22-fold quotients : {2,2,10}*80
44-fold quotients : {2,2,5}*40
55-fold quotients : {2,2,4}*32
110-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)
(20,22);;
s2 := (24,25)(26,27)(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42);;
s3 := (23,29)(24,26)(25,35)(27,37)(28,31)(30,33)(32,41)(34,38)(36,39)(40,42);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(42)!( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)
(21,22);
s1 := Sym(42)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)
(18,19)(20,22);
s2 := Sym(42)!(24,25)(26,27)(29,32)(30,31)(33,34)(35,36)(37,40)(38,39)(41,42);
s3 := Sym(42)!(23,29)(24,26)(25,35)(27,37)(28,31)(30,33)(32,41)(34,38)(36,39)
(40,42);
poly := sub<Sym(42)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope