include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,42}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,42}*1764
if this polytope has a name.
Group : SmallGroup(1764,146)
Rank : 3
Schlafli Type : {3,42}
Number of vertices, edges, etc : 21, 441, 294
Order of s0s1s2 : 6
Order of s0s1s2s1 : 42
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,14}*588
49-fold quotients : {3,6}*36
147-fold quotients : {3,2}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 43)( 3, 36)( 4, 29)( 5, 22)( 6, 15)( 7, 8)( 9, 49)( 10, 42)
( 11, 35)( 12, 28)( 13, 21)( 16, 48)( 17, 41)( 18, 34)( 19, 27)( 23, 47)
( 24, 40)( 25, 33)( 30, 46)( 31, 39)( 37, 45)( 50, 99)( 51,141)( 52,134)
( 53,127)( 54,120)( 55,113)( 56,106)( 57,105)( 58,147)( 59,140)( 60,133)
( 61,126)( 62,119)( 63,112)( 64,104)( 65,146)( 66,139)( 67,132)( 68,125)
( 69,118)( 70,111)( 71,103)( 72,145)( 73,138)( 74,131)( 75,124)( 76,117)
( 77,110)( 78,102)( 79,144)( 80,137)( 81,130)( 82,123)( 83,116)( 84,109)
( 85,101)( 86,143)( 87,136)( 88,129)( 89,122)( 90,115)( 91,108)( 92,100)
( 93,142)( 94,135)( 95,128)( 96,121)( 97,114)( 98,107);;
s1 := ( 1, 50)( 2, 85)( 3, 71)( 4, 57)( 5, 92)( 6, 78)( 7, 64)( 8, 53)
( 9, 88)( 10, 74)( 11, 60)( 12, 95)( 13, 81)( 14, 67)( 15, 56)( 16, 91)
( 17, 77)( 18, 63)( 19, 98)( 20, 84)( 21, 70)( 22, 52)( 23, 87)( 24, 73)
( 25, 59)( 26, 94)( 27, 80)( 28, 66)( 29, 55)( 30, 90)( 31, 76)( 32, 62)
( 33, 97)( 34, 83)( 35, 69)( 36, 51)( 37, 86)( 38, 72)( 39, 58)( 40, 93)
( 41, 79)( 42, 65)( 43, 54)( 44, 89)( 45, 75)( 46, 61)( 47, 96)( 48, 82)
( 49, 68)(100,134)(101,120)(102,106)(103,141)(104,127)(105,113)(107,137)
(108,123)(110,144)(111,130)(112,116)(114,140)(115,126)(117,147)(118,133)
(121,136)(124,143)(125,129)(128,139)(131,146)(138,142);;
s2 := ( 1, 44)( 2, 43)( 3, 49)( 4, 48)( 5, 47)( 6, 46)( 7, 45)( 8, 37)
( 9, 36)( 10, 42)( 11, 41)( 12, 40)( 13, 39)( 14, 38)( 15, 30)( 16, 29)
( 17, 35)( 18, 34)( 19, 33)( 20, 32)( 21, 31)( 22, 23)( 24, 28)( 25, 27)
( 50,142)( 51,141)( 52,147)( 53,146)( 54,145)( 55,144)( 56,143)( 57,135)
( 58,134)( 59,140)( 60,139)( 61,138)( 62,137)( 63,136)( 64,128)( 65,127)
( 66,133)( 67,132)( 68,131)( 69,130)( 70,129)( 71,121)( 72,120)( 73,126)
( 74,125)( 75,124)( 76,123)( 77,122)( 78,114)( 79,113)( 80,119)( 81,118)
( 82,117)( 83,116)( 84,115)( 85,107)( 86,106)( 87,112)( 88,111)( 89,110)
( 90,109)( 91,108)( 92,100)( 93, 99)( 94,105)( 95,104)( 96,103)( 97,102)
( 98,101);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(147)!( 2, 43)( 3, 36)( 4, 29)( 5, 22)( 6, 15)( 7, 8)( 9, 49)
( 10, 42)( 11, 35)( 12, 28)( 13, 21)( 16, 48)( 17, 41)( 18, 34)( 19, 27)
( 23, 47)( 24, 40)( 25, 33)( 30, 46)( 31, 39)( 37, 45)( 50, 99)( 51,141)
( 52,134)( 53,127)( 54,120)( 55,113)( 56,106)( 57,105)( 58,147)( 59,140)
( 60,133)( 61,126)( 62,119)( 63,112)( 64,104)( 65,146)( 66,139)( 67,132)
( 68,125)( 69,118)( 70,111)( 71,103)( 72,145)( 73,138)( 74,131)( 75,124)
( 76,117)( 77,110)( 78,102)( 79,144)( 80,137)( 81,130)( 82,123)( 83,116)
( 84,109)( 85,101)( 86,143)( 87,136)( 88,129)( 89,122)( 90,115)( 91,108)
( 92,100)( 93,142)( 94,135)( 95,128)( 96,121)( 97,114)( 98,107);
s1 := Sym(147)!( 1, 50)( 2, 85)( 3, 71)( 4, 57)( 5, 92)( 6, 78)( 7, 64)
( 8, 53)( 9, 88)( 10, 74)( 11, 60)( 12, 95)( 13, 81)( 14, 67)( 15, 56)
( 16, 91)( 17, 77)( 18, 63)( 19, 98)( 20, 84)( 21, 70)( 22, 52)( 23, 87)
( 24, 73)( 25, 59)( 26, 94)( 27, 80)( 28, 66)( 29, 55)( 30, 90)( 31, 76)
( 32, 62)( 33, 97)( 34, 83)( 35, 69)( 36, 51)( 37, 86)( 38, 72)( 39, 58)
( 40, 93)( 41, 79)( 42, 65)( 43, 54)( 44, 89)( 45, 75)( 46, 61)( 47, 96)
( 48, 82)( 49, 68)(100,134)(101,120)(102,106)(103,141)(104,127)(105,113)
(107,137)(108,123)(110,144)(111,130)(112,116)(114,140)(115,126)(117,147)
(118,133)(121,136)(124,143)(125,129)(128,139)(131,146)(138,142);
s2 := Sym(147)!( 1, 44)( 2, 43)( 3, 49)( 4, 48)( 5, 47)( 6, 46)( 7, 45)
( 8, 37)( 9, 36)( 10, 42)( 11, 41)( 12, 40)( 13, 39)( 14, 38)( 15, 30)
( 16, 29)( 17, 35)( 18, 34)( 19, 33)( 20, 32)( 21, 31)( 22, 23)( 24, 28)
( 25, 27)( 50,142)( 51,141)( 52,147)( 53,146)( 54,145)( 55,144)( 56,143)
( 57,135)( 58,134)( 59,140)( 60,139)( 61,138)( 62,137)( 63,136)( 64,128)
( 65,127)( 66,133)( 67,132)( 68,131)( 69,130)( 70,129)( 71,121)( 72,120)
( 73,126)( 74,125)( 75,124)( 76,123)( 77,122)( 78,114)( 79,113)( 80,119)
( 81,118)( 82,117)( 83,116)( 84,115)( 85,107)( 86,106)( 87,112)( 88,111)
( 89,110)( 90,109)( 91,108)( 92,100)( 93, 99)( 94,105)( 95,104)( 96,103)
( 97,102)( 98,101);
poly := sub<Sym(147)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1 >;
References : None.
to this polytope