include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {42,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {42,3}*1764
if this polytope has a name.
Group : SmallGroup(1764,146)
Rank : 3
Schlafli Type : {42,3}
Number of vertices, edges, etc : 294, 441, 21
Order of s0s1s2 : 6
Order of s0s1s2s1 : 42
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {14,3}*588
49-fold quotients : {6,3}*36
147-fold quotients : {2,3}*12
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8, 43)( 9, 49)( 10, 48)( 11, 47)( 12, 46)
( 13, 45)( 14, 44)( 15, 36)( 16, 42)( 17, 41)( 18, 40)( 19, 39)( 20, 38)
( 21, 37)( 22, 29)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,100)( 57,141)
( 58,147)( 59,146)( 60,145)( 61,144)( 62,143)( 63,142)( 64,134)( 65,140)
( 66,139)( 67,138)( 68,137)( 69,136)( 70,135)( 71,127)( 72,133)( 73,132)
( 74,131)( 75,130)( 76,129)( 77,128)( 78,120)( 79,126)( 80,125)( 81,124)
( 82,123)( 83,122)( 84,121)( 85,113)( 86,119)( 87,118)( 88,117)( 89,116)
( 90,115)( 91,114)( 92,106)( 93,112)( 94,111)( 95,110)( 96,109)( 97,108)
( 98,107);;
s1 := ( 1, 58)( 2, 51)( 3, 93)( 4, 86)( 5, 79)( 6, 72)( 7, 65)( 8, 57)
( 9, 50)( 10, 92)( 11, 85)( 12, 78)( 13, 71)( 14, 64)( 15, 63)( 16, 56)
( 17, 98)( 18, 91)( 19, 84)( 20, 77)( 21, 70)( 22, 62)( 23, 55)( 24, 97)
( 25, 90)( 26, 83)( 27, 76)( 28, 69)( 29, 61)( 30, 54)( 31, 96)( 32, 89)
( 33, 82)( 34, 75)( 35, 68)( 36, 60)( 37, 53)( 38, 95)( 39, 88)( 40, 81)
( 41, 74)( 42, 67)( 43, 59)( 44, 52)( 45, 94)( 46, 87)( 47, 80)( 48, 73)
( 49, 66)( 99,107)(101,142)(102,135)(103,128)(104,121)(105,114)(108,141)
(109,134)(110,127)(111,120)(112,113)(115,147)(116,140)(117,133)(118,126)
(122,146)(123,139)(124,132)(129,145)(130,138)(136,144);;
s2 := ( 2, 36)( 3, 22)( 4, 8)( 5, 43)( 6, 29)( 7, 15)( 9, 39)( 10, 25)
( 12, 46)( 13, 32)( 14, 18)( 16, 42)( 17, 28)( 19, 49)( 20, 35)( 23, 38)
( 26, 45)( 27, 31)( 30, 41)( 33, 48)( 40, 44)( 50, 99)( 51,134)( 52,120)
( 53,106)( 54,141)( 55,127)( 56,113)( 57,102)( 58,137)( 59,123)( 60,109)
( 61,144)( 62,130)( 63,116)( 64,105)( 65,140)( 66,126)( 67,112)( 68,147)
( 69,133)( 70,119)( 71,101)( 72,136)( 73,122)( 74,108)( 75,143)( 76,129)
( 77,115)( 78,104)( 79,139)( 80,125)( 81,111)( 82,146)( 83,132)( 84,118)
( 85,100)( 86,135)( 87,121)( 88,107)( 89,142)( 90,128)( 91,114)( 92,103)
( 93,138)( 94,124)( 95,110)( 96,145)( 97,131)( 98,117);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2,
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(147)!( 2, 7)( 3, 6)( 4, 5)( 8, 43)( 9, 49)( 10, 48)( 11, 47)
( 12, 46)( 13, 45)( 14, 44)( 15, 36)( 16, 42)( 17, 41)( 18, 40)( 19, 39)
( 20, 38)( 21, 37)( 22, 29)( 23, 35)( 24, 34)( 25, 33)( 26, 32)( 27, 31)
( 28, 30)( 50, 99)( 51,105)( 52,104)( 53,103)( 54,102)( 55,101)( 56,100)
( 57,141)( 58,147)( 59,146)( 60,145)( 61,144)( 62,143)( 63,142)( 64,134)
( 65,140)( 66,139)( 67,138)( 68,137)( 69,136)( 70,135)( 71,127)( 72,133)
( 73,132)( 74,131)( 75,130)( 76,129)( 77,128)( 78,120)( 79,126)( 80,125)
( 81,124)( 82,123)( 83,122)( 84,121)( 85,113)( 86,119)( 87,118)( 88,117)
( 89,116)( 90,115)( 91,114)( 92,106)( 93,112)( 94,111)( 95,110)( 96,109)
( 97,108)( 98,107);
s1 := Sym(147)!( 1, 58)( 2, 51)( 3, 93)( 4, 86)( 5, 79)( 6, 72)( 7, 65)
( 8, 57)( 9, 50)( 10, 92)( 11, 85)( 12, 78)( 13, 71)( 14, 64)( 15, 63)
( 16, 56)( 17, 98)( 18, 91)( 19, 84)( 20, 77)( 21, 70)( 22, 62)( 23, 55)
( 24, 97)( 25, 90)( 26, 83)( 27, 76)( 28, 69)( 29, 61)( 30, 54)( 31, 96)
( 32, 89)( 33, 82)( 34, 75)( 35, 68)( 36, 60)( 37, 53)( 38, 95)( 39, 88)
( 40, 81)( 41, 74)( 42, 67)( 43, 59)( 44, 52)( 45, 94)( 46, 87)( 47, 80)
( 48, 73)( 49, 66)( 99,107)(101,142)(102,135)(103,128)(104,121)(105,114)
(108,141)(109,134)(110,127)(111,120)(112,113)(115,147)(116,140)(117,133)
(118,126)(122,146)(123,139)(124,132)(129,145)(130,138)(136,144);
s2 := Sym(147)!( 2, 36)( 3, 22)( 4, 8)( 5, 43)( 6, 29)( 7, 15)( 9, 39)
( 10, 25)( 12, 46)( 13, 32)( 14, 18)( 16, 42)( 17, 28)( 19, 49)( 20, 35)
( 23, 38)( 26, 45)( 27, 31)( 30, 41)( 33, 48)( 40, 44)( 50, 99)( 51,134)
( 52,120)( 53,106)( 54,141)( 55,127)( 56,113)( 57,102)( 58,137)( 59,123)
( 60,109)( 61,144)( 62,130)( 63,116)( 64,105)( 65,140)( 66,126)( 67,112)
( 68,147)( 69,133)( 70,119)( 71,101)( 72,136)( 73,122)( 74,108)( 75,143)
( 76,129)( 77,115)( 78,104)( 79,139)( 80,125)( 81,111)( 82,146)( 83,132)
( 84,118)( 85,100)( 86,135)( 87,121)( 88,107)( 89,142)( 90,128)( 91,114)
( 92,103)( 93,138)( 94,124)( 95,110)( 96,145)( 97,131)( 98,117);
poly := sub<Sym(147)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope