include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {7,14}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {7,14}*1792b
if this polytope has a name.
Group : SmallGroup(1792,1083551)
Rank : 3
Schlafli Type : {7,14}
Number of vertices, edges, etc : 64, 448, 128
Order of s0s1s2 : 4
Order of s0s1s2s1 : 7
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {7,7}*896
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 17)( 4, 18)( 5, 97)( 6, 98)( 7,113)( 8,114)( 9, 33)( 10, 34)
( 11, 49)( 12, 50)( 13, 65)( 14, 66)( 15, 81)( 16, 82)( 19, 20)( 21,100)
( 22, 99)( 23,115)( 24,116)( 25, 36)( 26, 35)( 27, 51)( 28, 52)( 29, 67)
( 30, 68)( 31, 84)( 32, 83)( 37,105)( 38,106)( 39,122)( 40,121)( 43, 58)
( 44, 57)( 45, 73)( 46, 74)( 47, 90)( 48, 89)( 53,108)( 54,107)( 55,124)
( 56,123)( 59, 60)( 61, 75)( 62, 76)( 63, 91)( 64, 92)( 69,110)( 70,109)
( 71,126)( 72,125)( 77, 78)( 79, 94)( 80, 93)( 85,111)( 86,112)( 87,128)
( 88,127)(101,102)(103,117)(104,118);;
s1 := ( 3, 33)( 4, 34)( 5,113)( 6,114)( 7, 81)( 8, 82)( 9, 65)( 10, 66)
( 11, 97)( 12, 98)( 13, 49)( 14, 50)( 15, 17)( 16, 18)( 19, 48)( 20, 47)
( 21,128)( 22,127)( 23, 95)( 24, 96)( 25, 80)( 26, 79)( 27,111)( 28,112)
( 29, 63)( 30, 64)( 31, 32)( 35, 36)( 37,115)( 38,116)( 39, 84)( 40, 83)
( 41, 67)( 42, 68)( 43,100)( 44, 99)( 45, 51)( 46, 52)( 53,126)( 54,125)
( 55, 94)( 56, 93)( 57, 78)( 58, 77)( 59,110)( 60,109)( 69,122)( 70,121)
( 71, 90)( 72, 89)( 75,105)( 76,106)( 85,119)( 86,120)( 87, 88)( 91,103)
( 92,104)(101,124)(102,123)(107,108);;
s2 := ( 1, 96)( 2, 95)( 3, 80)( 4, 79)( 5, 64)( 6, 63)( 7, 48)( 8, 47)
( 9,128)( 10,127)( 11,112)( 12,111)( 13, 32)( 14, 31)( 15, 16)( 17, 93)
( 18, 94)( 19, 78)( 20, 77)( 21, 62)( 22, 61)( 23, 45)( 24, 46)( 25,126)
( 26,125)( 27,109)( 28,110)( 33, 87)( 34, 88)( 35, 72)( 36, 71)( 37, 55)
( 38, 56)( 39, 40)( 41,119)( 42,120)( 43,104)( 44,103)( 49, 86)( 50, 85)
( 51, 70)( 52, 69)( 57,117)( 58,118)( 59,101)( 60,102)( 65, 83)( 66, 84)
( 73,115)( 74,116)( 75, 99)( 76,100)( 81, 82)( 89,113)( 90,114)( 91, 98)
( 92, 97)(105,124)(106,123)(121,122);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(128)!( 3, 17)( 4, 18)( 5, 97)( 6, 98)( 7,113)( 8,114)( 9, 33)
( 10, 34)( 11, 49)( 12, 50)( 13, 65)( 14, 66)( 15, 81)( 16, 82)( 19, 20)
( 21,100)( 22, 99)( 23,115)( 24,116)( 25, 36)( 26, 35)( 27, 51)( 28, 52)
( 29, 67)( 30, 68)( 31, 84)( 32, 83)( 37,105)( 38,106)( 39,122)( 40,121)
( 43, 58)( 44, 57)( 45, 73)( 46, 74)( 47, 90)( 48, 89)( 53,108)( 54,107)
( 55,124)( 56,123)( 59, 60)( 61, 75)( 62, 76)( 63, 91)( 64, 92)( 69,110)
( 70,109)( 71,126)( 72,125)( 77, 78)( 79, 94)( 80, 93)( 85,111)( 86,112)
( 87,128)( 88,127)(101,102)(103,117)(104,118);
s1 := Sym(128)!( 3, 33)( 4, 34)( 5,113)( 6,114)( 7, 81)( 8, 82)( 9, 65)
( 10, 66)( 11, 97)( 12, 98)( 13, 49)( 14, 50)( 15, 17)( 16, 18)( 19, 48)
( 20, 47)( 21,128)( 22,127)( 23, 95)( 24, 96)( 25, 80)( 26, 79)( 27,111)
( 28,112)( 29, 63)( 30, 64)( 31, 32)( 35, 36)( 37,115)( 38,116)( 39, 84)
( 40, 83)( 41, 67)( 42, 68)( 43,100)( 44, 99)( 45, 51)( 46, 52)( 53,126)
( 54,125)( 55, 94)( 56, 93)( 57, 78)( 58, 77)( 59,110)( 60,109)( 69,122)
( 70,121)( 71, 90)( 72, 89)( 75,105)( 76,106)( 85,119)( 86,120)( 87, 88)
( 91,103)( 92,104)(101,124)(102,123)(107,108);
s2 := Sym(128)!( 1, 96)( 2, 95)( 3, 80)( 4, 79)( 5, 64)( 6, 63)( 7, 48)
( 8, 47)( 9,128)( 10,127)( 11,112)( 12,111)( 13, 32)( 14, 31)( 15, 16)
( 17, 93)( 18, 94)( 19, 78)( 20, 77)( 21, 62)( 22, 61)( 23, 45)( 24, 46)
( 25,126)( 26,125)( 27,109)( 28,110)( 33, 87)( 34, 88)( 35, 72)( 36, 71)
( 37, 55)( 38, 56)( 39, 40)( 41,119)( 42,120)( 43,104)( 44,103)( 49, 86)
( 50, 85)( 51, 70)( 52, 69)( 57,117)( 58,118)( 59,101)( 60,102)( 65, 83)
( 66, 84)( 73,115)( 74,116)( 75, 99)( 76,100)( 81, 82)( 89,113)( 90,114)
( 91, 98)( 92, 97)(105,124)(106,123)(121,122);
poly := sub<Sym(128)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1 >;
References : None.
to this polytope