Polytope of Type {14,7}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {14,7}*1792b
if this polytope has a name.
Group : SmallGroup(1792,1083551)
Rank : 3
Schlafli Type : {14,7}
Number of vertices, edges, etc : 128, 448, 64
Order of s0s1s2 : 4
Order of s0s1s2s1 : 7
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {7,7}*896
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3, 17)(  4, 18)(  5, 97)(  6, 98)(  7,113)(  8,114)(  9, 33)( 10, 34)
( 11, 49)( 12, 50)( 13, 65)( 14, 66)( 15, 81)( 16, 82)( 19, 20)( 21,100)
( 22, 99)( 23,115)( 24,116)( 25, 36)( 26, 35)( 27, 51)( 28, 52)( 29, 67)
( 30, 68)( 31, 84)( 32, 83)( 37,105)( 38,106)( 39,122)( 40,121)( 43, 58)
( 44, 57)( 45, 73)( 46, 74)( 47, 90)( 48, 89)( 53,108)( 54,107)( 55,124)
( 56,123)( 59, 60)( 61, 75)( 62, 76)( 63, 91)( 64, 92)( 69,110)( 70,109)
( 71,126)( 72,125)( 77, 78)( 79, 94)( 80, 93)( 85,111)( 86,112)( 87,128)
( 88,127)(101,102)(103,117)(104,118);;
s1 := (  1,  2)(  3, 34)(  4, 33)(  5,114)(  6,113)(  7, 82)(  8, 81)(  9, 66)
( 10, 65)( 11, 98)( 12, 97)( 13, 50)( 14, 49)( 15, 18)( 16, 17)( 19, 47)
( 20, 48)( 21,127)( 22,128)( 23, 96)( 24, 95)( 25, 79)( 26, 80)( 27,112)
( 28,111)( 29, 64)( 30, 63)( 37,116)( 38,115)( 39, 83)( 40, 84)( 41, 68)
( 42, 67)( 43, 99)( 44,100)( 45, 52)( 46, 51)( 53,125)( 54,126)( 55, 93)
( 56, 94)( 57, 77)( 58, 78)( 59,109)( 60,110)( 61, 62)( 69,121)( 70,122)
( 71, 89)( 72, 90)( 73, 74)( 75,106)( 76,105)( 85,120)( 86,119)( 91,104)
( 92,103)(101,123)(102,124)(117,118);;
s2 := (  1, 96)(  2, 95)(  3, 80)(  4, 79)(  5, 64)(  6, 63)(  7, 48)(  8, 47)
(  9,128)( 10,127)( 11,112)( 12,111)( 13, 32)( 14, 31)( 15, 16)( 17, 93)
( 18, 94)( 19, 78)( 20, 77)( 21, 62)( 22, 61)( 23, 45)( 24, 46)( 25,126)
( 26,125)( 27,109)( 28,110)( 33, 87)( 34, 88)( 35, 72)( 36, 71)( 37, 55)
( 38, 56)( 39, 40)( 41,119)( 42,120)( 43,104)( 44,103)( 49, 86)( 50, 85)
( 51, 70)( 52, 69)( 57,117)( 58,118)( 59,101)( 60,102)( 65, 83)( 66, 84)
( 73,115)( 74,116)( 75, 99)( 76,100)( 81, 82)( 89,113)( 90,114)( 91, 98)
( 92, 97)(105,124)(106,123)(121,122);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(128)!(  3, 17)(  4, 18)(  5, 97)(  6, 98)(  7,113)(  8,114)(  9, 33)
( 10, 34)( 11, 49)( 12, 50)( 13, 65)( 14, 66)( 15, 81)( 16, 82)( 19, 20)
( 21,100)( 22, 99)( 23,115)( 24,116)( 25, 36)( 26, 35)( 27, 51)( 28, 52)
( 29, 67)( 30, 68)( 31, 84)( 32, 83)( 37,105)( 38,106)( 39,122)( 40,121)
( 43, 58)( 44, 57)( 45, 73)( 46, 74)( 47, 90)( 48, 89)( 53,108)( 54,107)
( 55,124)( 56,123)( 59, 60)( 61, 75)( 62, 76)( 63, 91)( 64, 92)( 69,110)
( 70,109)( 71,126)( 72,125)( 77, 78)( 79, 94)( 80, 93)( 85,111)( 86,112)
( 87,128)( 88,127)(101,102)(103,117)(104,118);
s1 := Sym(128)!(  1,  2)(  3, 34)(  4, 33)(  5,114)(  6,113)(  7, 82)(  8, 81)
(  9, 66)( 10, 65)( 11, 98)( 12, 97)( 13, 50)( 14, 49)( 15, 18)( 16, 17)
( 19, 47)( 20, 48)( 21,127)( 22,128)( 23, 96)( 24, 95)( 25, 79)( 26, 80)
( 27,112)( 28,111)( 29, 64)( 30, 63)( 37,116)( 38,115)( 39, 83)( 40, 84)
( 41, 68)( 42, 67)( 43, 99)( 44,100)( 45, 52)( 46, 51)( 53,125)( 54,126)
( 55, 93)( 56, 94)( 57, 77)( 58, 78)( 59,109)( 60,110)( 61, 62)( 69,121)
( 70,122)( 71, 89)( 72, 90)( 73, 74)( 75,106)( 76,105)( 85,120)( 86,119)
( 91,104)( 92,103)(101,123)(102,124)(117,118);
s2 := Sym(128)!(  1, 96)(  2, 95)(  3, 80)(  4, 79)(  5, 64)(  6, 63)(  7, 48)
(  8, 47)(  9,128)( 10,127)( 11,112)( 12,111)( 13, 32)( 14, 31)( 15, 16)
( 17, 93)( 18, 94)( 19, 78)( 20, 77)( 21, 62)( 22, 61)( 23, 45)( 24, 46)
( 25,126)( 26,125)( 27,109)( 28,110)( 33, 87)( 34, 88)( 35, 72)( 36, 71)
( 37, 55)( 38, 56)( 39, 40)( 41,119)( 42,120)( 43,104)( 44,103)( 49, 86)
( 50, 85)( 51, 70)( 52, 69)( 57,117)( 58,118)( 59,101)( 60,102)( 65, 83)
( 66, 84)( 73,115)( 74,116)( 75, 99)( 76,100)( 81, 82)( 89,113)( 90,114)
( 91, 98)( 92, 97)(105,124)(106,123)(121,122);
poly := sub<Sym(128)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope