include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {28,4,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,4,4}*1792a
Also Known As : {{28,4|2},{4,4}4}. if this polytope has another name.
Group : SmallGroup(1792,201148)
Rank : 4
Schlafli Type : {28,4,4}
Number of vertices, edges, etc : 28, 112, 16, 8
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {28,4,4}*896, {14,4,4}*896
4-fold quotients : {28,4,2}*448, {28,2,4}*448, {14,4,4}*448
7-fold quotients : {4,4,4}*256a
8-fold quotients : {28,2,2}*224, {14,2,4}*224, {14,4,2}*224
14-fold quotients : {4,4,4}*128, {2,4,4}*128
16-fold quotients : {7,2,4}*112, {14,2,2}*112
28-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
32-fold quotients : {7,2,2}*56
56-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 57)( 2, 63)( 3, 62)( 4, 61)( 5, 60)( 6, 59)( 7, 58)( 8, 64)
( 9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)( 16, 77)
( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)( 24, 83)
( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29, 85)( 30, 91)( 31, 90)( 32, 89)
( 33, 88)( 34, 87)( 35, 86)( 36, 92)( 37, 98)( 38, 97)( 39, 96)( 40, 95)
( 41, 94)( 42, 93)( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)( 48,101)
( 49,100)( 50,106)( 51,112)( 52,111)( 53,110)( 54,109)( 55,108)( 56,107)
(113,183)(114,189)(115,188)(116,187)(117,186)(118,185)(119,184)(120,190)
(121,196)(122,195)(123,194)(124,193)(125,192)(126,191)(127,169)(128,175)
(129,174)(130,173)(131,172)(132,171)(133,170)(134,176)(135,182)(136,181)
(137,180)(138,179)(139,178)(140,177)(141,211)(142,217)(143,216)(144,215)
(145,214)(146,213)(147,212)(148,218)(149,224)(150,223)(151,222)(152,221)
(153,220)(154,219)(155,197)(156,203)(157,202)(158,201)(159,200)(160,199)
(161,198)(162,204)(163,210)(164,209)(165,208)(166,207)(167,206)(168,205);;
s1 := ( 1,114)( 2,113)( 3,119)( 4,118)( 5,117)( 6,116)( 7,115)( 8,121)
( 9,120)( 10,126)( 11,125)( 12,124)( 13,123)( 14,122)( 15,128)( 16,127)
( 17,133)( 18,132)( 19,131)( 20,130)( 21,129)( 22,135)( 23,134)( 24,140)
( 25,139)( 26,138)( 27,137)( 28,136)( 29,142)( 30,141)( 31,147)( 32,146)
( 33,145)( 34,144)( 35,143)( 36,149)( 37,148)( 38,154)( 39,153)( 40,152)
( 41,151)( 42,150)( 43,156)( 44,155)( 45,161)( 46,160)( 47,159)( 48,158)
( 49,157)( 50,163)( 51,162)( 52,168)( 53,167)( 54,166)( 55,165)( 56,164)
( 57,170)( 58,169)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)( 64,177)
( 65,176)( 66,182)( 67,181)( 68,180)( 69,179)( 70,178)( 71,184)( 72,183)
( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,191)( 79,190)( 80,196)
( 81,195)( 82,194)( 83,193)( 84,192)( 85,198)( 86,197)( 87,203)( 88,202)
( 89,201)( 90,200)( 91,199)( 92,205)( 93,204)( 94,210)( 95,209)( 96,208)
( 97,207)( 98,206)( 99,212)(100,211)(101,217)(102,216)(103,215)(104,214)
(105,213)(106,219)(107,218)(108,224)(109,223)(110,222)(111,221)(112,220);;
s2 := (113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)(120,148)
(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)(128,156)
(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)(136,164)
(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)(172,200)
(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)(180,208)
(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)(188,216)
(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)(196,224);;
s3 := ( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)( 8, 64)
( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)( 16, 72)
( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 92)( 30, 93)( 31, 94)( 32, 95)
( 33, 96)( 34, 97)( 35, 98)( 36, 85)( 37, 86)( 38, 87)( 39, 88)( 40, 89)
( 41, 90)( 42, 91)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)( 48,111)
( 49,112)( 50, 99)( 51,100)( 52,101)( 53,102)( 54,103)( 55,104)( 56,105)
(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176)
(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)(128,184)
(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)(136,192)
(137,193)(138,194)(139,195)(140,196)(141,204)(142,205)(143,206)(144,207)
(145,208)(146,209)(147,210)(148,197)(149,198)(150,199)(151,200)(152,201)
(153,202)(154,203)(155,218)(156,219)(157,220)(158,221)(159,222)(160,223)
(161,224)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)(168,217);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(224)!( 1, 57)( 2, 63)( 3, 62)( 4, 61)( 5, 60)( 6, 59)( 7, 58)
( 8, 64)( 9, 70)( 10, 69)( 11, 68)( 12, 67)( 13, 66)( 14, 65)( 15, 71)
( 16, 77)( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 78)( 23, 84)
( 24, 83)( 25, 82)( 26, 81)( 27, 80)( 28, 79)( 29, 85)( 30, 91)( 31, 90)
( 32, 89)( 33, 88)( 34, 87)( 35, 86)( 36, 92)( 37, 98)( 38, 97)( 39, 96)
( 40, 95)( 41, 94)( 42, 93)( 43, 99)( 44,105)( 45,104)( 46,103)( 47,102)
( 48,101)( 49,100)( 50,106)( 51,112)( 52,111)( 53,110)( 54,109)( 55,108)
( 56,107)(113,183)(114,189)(115,188)(116,187)(117,186)(118,185)(119,184)
(120,190)(121,196)(122,195)(123,194)(124,193)(125,192)(126,191)(127,169)
(128,175)(129,174)(130,173)(131,172)(132,171)(133,170)(134,176)(135,182)
(136,181)(137,180)(138,179)(139,178)(140,177)(141,211)(142,217)(143,216)
(144,215)(145,214)(146,213)(147,212)(148,218)(149,224)(150,223)(151,222)
(152,221)(153,220)(154,219)(155,197)(156,203)(157,202)(158,201)(159,200)
(160,199)(161,198)(162,204)(163,210)(164,209)(165,208)(166,207)(167,206)
(168,205);
s1 := Sym(224)!( 1,114)( 2,113)( 3,119)( 4,118)( 5,117)( 6,116)( 7,115)
( 8,121)( 9,120)( 10,126)( 11,125)( 12,124)( 13,123)( 14,122)( 15,128)
( 16,127)( 17,133)( 18,132)( 19,131)( 20,130)( 21,129)( 22,135)( 23,134)
( 24,140)( 25,139)( 26,138)( 27,137)( 28,136)( 29,142)( 30,141)( 31,147)
( 32,146)( 33,145)( 34,144)( 35,143)( 36,149)( 37,148)( 38,154)( 39,153)
( 40,152)( 41,151)( 42,150)( 43,156)( 44,155)( 45,161)( 46,160)( 47,159)
( 48,158)( 49,157)( 50,163)( 51,162)( 52,168)( 53,167)( 54,166)( 55,165)
( 56,164)( 57,170)( 58,169)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)
( 64,177)( 65,176)( 66,182)( 67,181)( 68,180)( 69,179)( 70,178)( 71,184)
( 72,183)( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,191)( 79,190)
( 80,196)( 81,195)( 82,194)( 83,193)( 84,192)( 85,198)( 86,197)( 87,203)
( 88,202)( 89,201)( 90,200)( 91,199)( 92,205)( 93,204)( 94,210)( 95,209)
( 96,208)( 97,207)( 98,206)( 99,212)(100,211)(101,217)(102,216)(103,215)
(104,214)(105,213)(106,219)(107,218)(108,224)(109,223)(110,222)(111,221)
(112,220);
s2 := Sym(224)!(113,141)(114,142)(115,143)(116,144)(117,145)(118,146)(119,147)
(120,148)(121,149)(122,150)(123,151)(124,152)(125,153)(126,154)(127,155)
(128,156)(129,157)(130,158)(131,159)(132,160)(133,161)(134,162)(135,163)
(136,164)(137,165)(138,166)(139,167)(140,168)(169,197)(170,198)(171,199)
(172,200)(173,201)(174,202)(175,203)(176,204)(177,205)(178,206)(179,207)
(180,208)(181,209)(182,210)(183,211)(184,212)(185,213)(186,214)(187,215)
(188,216)(189,217)(190,218)(191,219)(192,220)(193,221)(194,222)(195,223)
(196,224);
s3 := Sym(224)!( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)
( 8, 64)( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)
( 16, 72)( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 92)( 30, 93)( 31, 94)
( 32, 95)( 33, 96)( 34, 97)( 35, 98)( 36, 85)( 37, 86)( 38, 87)( 39, 88)
( 40, 89)( 41, 90)( 42, 91)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)
( 48,111)( 49,112)( 50, 99)( 51,100)( 52,101)( 53,102)( 54,103)( 55,104)
( 56,105)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)
(120,176)(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)
(128,184)(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)
(136,192)(137,193)(138,194)(139,195)(140,196)(141,204)(142,205)(143,206)
(144,207)(145,208)(146,209)(147,210)(148,197)(149,198)(150,199)(151,200)
(152,201)(153,202)(154,203)(155,218)(156,219)(157,220)(158,221)(159,222)
(160,223)(161,224)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)
(168,217);
poly := sub<Sym(224)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope