include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,28,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,28,4}*1792a
if this polytope has a name.
Group : SmallGroup(1792,201150)
Rank : 4
Schlafli Type : {4,28,4}
Number of vertices, edges, etc : 4, 112, 112, 8
Order of s0s1s2s3 : 28
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,28,4}*896, {2,28,4}*896
4-fold quotients : {2,28,4}*448, {4,28,2}*448, {4,14,4}*448
7-fold quotients : {4,4,4}*256a
8-fold quotients : {2,28,2}*224, {2,14,4}*224, {4,14,2}*224
14-fold quotients : {4,4,4}*128, {2,4,4}*128
16-fold quotients : {2,14,2}*112
28-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
32-fold quotients : {2,7,2}*56
56-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)( 8, 64)
( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)( 16, 72)
( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 85)( 30, 86)( 31, 87)( 32, 88)
( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)( 40, 96)
( 41, 97)( 42, 98)( 43, 99)( 44,100)( 45,101)( 46,102)( 47,103)( 48,104)
( 49,105)( 50,106)( 51,107)( 52,108)( 53,109)( 54,110)( 55,111)( 56,112)
(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)(120,190)
(121,191)(122,192)(123,193)(124,194)(125,195)(126,196)(127,169)(128,170)
(129,171)(130,172)(131,173)(132,174)(133,175)(134,176)(135,177)(136,178)
(137,179)(138,180)(139,181)(140,182)(141,211)(142,212)(143,213)(144,214)
(145,215)(146,216)(147,217)(148,218)(149,219)(150,220)(151,221)(152,222)
(153,223)(154,224)(155,197)(156,198)(157,199)(158,200)(159,201)(160,202)
(161,203)(162,204)(163,205)(164,206)(165,207)(166,208)(167,209)(168,210);;
s1 := ( 1,113)( 2,119)( 3,118)( 4,117)( 5,116)( 6,115)( 7,114)( 8,120)
( 9,126)( 10,125)( 11,124)( 12,123)( 13,122)( 14,121)( 15,127)( 16,133)
( 17,132)( 18,131)( 19,130)( 20,129)( 21,128)( 22,134)( 23,140)( 24,139)
( 25,138)( 26,137)( 27,136)( 28,135)( 29,141)( 30,147)( 31,146)( 32,145)
( 33,144)( 34,143)( 35,142)( 36,148)( 37,154)( 38,153)( 39,152)( 40,151)
( 41,150)( 42,149)( 43,155)( 44,161)( 45,160)( 46,159)( 47,158)( 48,157)
( 49,156)( 50,162)( 51,168)( 52,167)( 53,166)( 54,165)( 55,164)( 56,163)
( 57,169)( 58,175)( 59,174)( 60,173)( 61,172)( 62,171)( 63,170)( 64,176)
( 65,182)( 66,181)( 67,180)( 68,179)( 69,178)( 70,177)( 71,183)( 72,189)
( 73,188)( 74,187)( 75,186)( 76,185)( 77,184)( 78,190)( 79,196)( 80,195)
( 81,194)( 82,193)( 83,192)( 84,191)( 85,197)( 86,203)( 87,202)( 88,201)
( 89,200)( 90,199)( 91,198)( 92,204)( 93,210)( 94,209)( 95,208)( 96,207)
( 97,206)( 98,205)( 99,211)(100,217)(101,216)(102,215)(103,214)(104,213)
(105,212)(106,218)(107,224)(108,223)(109,222)(110,221)(111,220)(112,219);;
s2 := ( 1, 2)( 3, 7)( 4, 6)( 8, 9)( 10, 14)( 11, 13)( 15, 16)( 17, 21)
( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 30)( 31, 35)( 32, 34)( 36, 37)
( 38, 42)( 39, 41)( 43, 44)( 45, 49)( 46, 48)( 50, 51)( 52, 56)( 53, 55)
( 57, 58)( 59, 63)( 60, 62)( 64, 65)( 66, 70)( 67, 69)( 71, 72)( 73, 77)
( 74, 76)( 78, 79)( 80, 84)( 81, 83)( 85, 86)( 87, 91)( 88, 90)( 92, 93)
( 94, 98)( 95, 97)( 99,100)(101,105)(102,104)(106,107)(108,112)(109,111)
(113,142)(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)(120,149)
(121,148)(122,154)(123,153)(124,152)(125,151)(126,150)(127,156)(128,155)
(129,161)(130,160)(131,159)(132,158)(133,157)(134,163)(135,162)(136,168)
(137,167)(138,166)(139,165)(140,164)(169,198)(170,197)(171,203)(172,202)
(173,201)(174,200)(175,199)(176,205)(177,204)(178,210)(179,209)(180,208)
(181,207)(182,206)(183,212)(184,211)(185,217)(186,216)(187,215)(188,214)
(189,213)(190,219)(191,218)(192,224)(193,223)(194,222)(195,221)(196,220);;
s3 := ( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)( 8, 64)
( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)( 16, 72)
( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)( 24, 80)
( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 92)( 30, 93)( 31, 94)( 32, 95)
( 33, 96)( 34, 97)( 35, 98)( 36, 85)( 37, 86)( 38, 87)( 39, 88)( 40, 89)
( 41, 90)( 42, 91)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)( 48,111)
( 49,112)( 50, 99)( 51,100)( 52,101)( 53,102)( 54,103)( 55,104)( 56,105)
(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)(120,176)
(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)(128,184)
(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)(136,192)
(137,193)(138,194)(139,195)(140,196)(141,204)(142,205)(143,206)(144,207)
(145,208)(146,209)(147,210)(148,197)(149,198)(150,199)(151,200)(152,201)
(153,202)(154,203)(155,218)(156,219)(157,220)(158,221)(159,222)(160,223)
(161,224)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)(168,217);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(224)!( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)
( 8, 64)( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)
( 16, 72)( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 85)( 30, 86)( 31, 87)
( 32, 88)( 33, 89)( 34, 90)( 35, 91)( 36, 92)( 37, 93)( 38, 94)( 39, 95)
( 40, 96)( 41, 97)( 42, 98)( 43, 99)( 44,100)( 45,101)( 46,102)( 47,103)
( 48,104)( 49,105)( 50,106)( 51,107)( 52,108)( 53,109)( 54,110)( 55,111)
( 56,112)(113,183)(114,184)(115,185)(116,186)(117,187)(118,188)(119,189)
(120,190)(121,191)(122,192)(123,193)(124,194)(125,195)(126,196)(127,169)
(128,170)(129,171)(130,172)(131,173)(132,174)(133,175)(134,176)(135,177)
(136,178)(137,179)(138,180)(139,181)(140,182)(141,211)(142,212)(143,213)
(144,214)(145,215)(146,216)(147,217)(148,218)(149,219)(150,220)(151,221)
(152,222)(153,223)(154,224)(155,197)(156,198)(157,199)(158,200)(159,201)
(160,202)(161,203)(162,204)(163,205)(164,206)(165,207)(166,208)(167,209)
(168,210);
s1 := Sym(224)!( 1,113)( 2,119)( 3,118)( 4,117)( 5,116)( 6,115)( 7,114)
( 8,120)( 9,126)( 10,125)( 11,124)( 12,123)( 13,122)( 14,121)( 15,127)
( 16,133)( 17,132)( 18,131)( 19,130)( 20,129)( 21,128)( 22,134)( 23,140)
( 24,139)( 25,138)( 26,137)( 27,136)( 28,135)( 29,141)( 30,147)( 31,146)
( 32,145)( 33,144)( 34,143)( 35,142)( 36,148)( 37,154)( 38,153)( 39,152)
( 40,151)( 41,150)( 42,149)( 43,155)( 44,161)( 45,160)( 46,159)( 47,158)
( 48,157)( 49,156)( 50,162)( 51,168)( 52,167)( 53,166)( 54,165)( 55,164)
( 56,163)( 57,169)( 58,175)( 59,174)( 60,173)( 61,172)( 62,171)( 63,170)
( 64,176)( 65,182)( 66,181)( 67,180)( 68,179)( 69,178)( 70,177)( 71,183)
( 72,189)( 73,188)( 74,187)( 75,186)( 76,185)( 77,184)( 78,190)( 79,196)
( 80,195)( 81,194)( 82,193)( 83,192)( 84,191)( 85,197)( 86,203)( 87,202)
( 88,201)( 89,200)( 90,199)( 91,198)( 92,204)( 93,210)( 94,209)( 95,208)
( 96,207)( 97,206)( 98,205)( 99,211)(100,217)(101,216)(102,215)(103,214)
(104,213)(105,212)(106,218)(107,224)(108,223)(109,222)(110,221)(111,220)
(112,219);
s2 := Sym(224)!( 1, 2)( 3, 7)( 4, 6)( 8, 9)( 10, 14)( 11, 13)( 15, 16)
( 17, 21)( 18, 20)( 22, 23)( 24, 28)( 25, 27)( 29, 30)( 31, 35)( 32, 34)
( 36, 37)( 38, 42)( 39, 41)( 43, 44)( 45, 49)( 46, 48)( 50, 51)( 52, 56)
( 53, 55)( 57, 58)( 59, 63)( 60, 62)( 64, 65)( 66, 70)( 67, 69)( 71, 72)
( 73, 77)( 74, 76)( 78, 79)( 80, 84)( 81, 83)( 85, 86)( 87, 91)( 88, 90)
( 92, 93)( 94, 98)( 95, 97)( 99,100)(101,105)(102,104)(106,107)(108,112)
(109,111)(113,142)(114,141)(115,147)(116,146)(117,145)(118,144)(119,143)
(120,149)(121,148)(122,154)(123,153)(124,152)(125,151)(126,150)(127,156)
(128,155)(129,161)(130,160)(131,159)(132,158)(133,157)(134,163)(135,162)
(136,168)(137,167)(138,166)(139,165)(140,164)(169,198)(170,197)(171,203)
(172,202)(173,201)(174,200)(175,199)(176,205)(177,204)(178,210)(179,209)
(180,208)(181,207)(182,206)(183,212)(184,211)(185,217)(186,216)(187,215)
(188,214)(189,213)(190,219)(191,218)(192,224)(193,223)(194,222)(195,221)
(196,220);
s3 := Sym(224)!( 1, 57)( 2, 58)( 3, 59)( 4, 60)( 5, 61)( 6, 62)( 7, 63)
( 8, 64)( 9, 65)( 10, 66)( 11, 67)( 12, 68)( 13, 69)( 14, 70)( 15, 71)
( 16, 72)( 17, 73)( 18, 74)( 19, 75)( 20, 76)( 21, 77)( 22, 78)( 23, 79)
( 24, 80)( 25, 81)( 26, 82)( 27, 83)( 28, 84)( 29, 92)( 30, 93)( 31, 94)
( 32, 95)( 33, 96)( 34, 97)( 35, 98)( 36, 85)( 37, 86)( 38, 87)( 39, 88)
( 40, 89)( 41, 90)( 42, 91)( 43,106)( 44,107)( 45,108)( 46,109)( 47,110)
( 48,111)( 49,112)( 50, 99)( 51,100)( 52,101)( 53,102)( 54,103)( 55,104)
( 56,105)(113,169)(114,170)(115,171)(116,172)(117,173)(118,174)(119,175)
(120,176)(121,177)(122,178)(123,179)(124,180)(125,181)(126,182)(127,183)
(128,184)(129,185)(130,186)(131,187)(132,188)(133,189)(134,190)(135,191)
(136,192)(137,193)(138,194)(139,195)(140,196)(141,204)(142,205)(143,206)
(144,207)(145,208)(146,209)(147,210)(148,197)(149,198)(150,199)(151,200)
(152,201)(153,202)(154,203)(155,218)(156,219)(157,220)(158,221)(159,222)
(160,223)(161,224)(162,211)(163,212)(164,213)(165,214)(166,215)(167,216)
(168,217);
poly := sub<Sym(224)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s1*s3*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
References : None.
to this polytope