Polytope of Type {28,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,4}*448
if this polytope has a name.
Group : SmallGroup(448,275)
Rank : 3
Schlafli Type : {28,4}
Number of vertices, edges, etc : 56, 112, 8
Order of s0s1s2 : 28
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {28,4,2} of size 896
   {28,4,4} of size 1792
Vertex Figure Of :
   {2,28,4} of size 896
   {4,28,4} of size 1792
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {28,4}*224
   4-fold quotients : {28,2}*112, {14,4}*112
   7-fold quotients : {4,4}*64
   8-fold quotients : {14,2}*56
   14-fold quotients : {4,4}*32
   16-fold quotients : {7,2}*28
   28-fold quotients : {2,4}*16, {4,2}*16
   56-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {56,4}*896a, {28,8}*896a, {28,4}*896, {56,4}*896b, {28,8}*896b
   3-fold covers : {28,12}*1344a, {84,4}*1344a
   4-fold covers : {56,8}*1792a, {28,8}*1792a, {56,8}*1792b, {56,4}*1792a, {56,8}*1792c, {56,8}*1792d, {28,16}*1792a, {112,4}*1792a, {28,16}*1792b, {112,4}*1792b, {28,4}*1792, {56,4}*1792b, {28,8}*1792b, {28,8}*1792c, {56,8}*1792e, {56,4}*1792c, {56,4}*1792d, {28,8}*1792d, {56,8}*1792f, {56,8}*1792g, {56,8}*1792h
Permutation Representation (GAP) :
s0 := (  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)( 16, 28)
( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 30, 35)( 31, 34)( 32, 33)
( 37, 42)( 38, 41)( 39, 40)( 43, 50)( 44, 56)( 45, 55)( 46, 54)( 47, 53)
( 48, 52)( 49, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)( 61, 88)( 62, 87)
( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)( 70, 93)
( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)( 77,107)( 78, 99)
( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100);;
s1 := (  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)(  8, 65)
(  9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)( 16, 71)
( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)( 24, 84)
( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29, 86)( 30, 85)( 31, 91)( 32, 90)
( 33, 89)( 34, 88)( 35, 87)( 36, 93)( 37, 92)( 38, 98)( 39, 97)( 40, 96)
( 41, 95)( 42, 94)( 43,100)( 44, 99)( 45,105)( 46,104)( 47,103)( 48,102)
( 49,101)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)( 56,108);;
s2 := ( 29, 36)( 30, 37)( 31, 38)( 32, 39)( 33, 40)( 34, 41)( 35, 42)( 43, 50)
( 44, 51)( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 57, 71)( 58, 72)
( 59, 73)( 60, 74)( 61, 75)( 62, 76)( 63, 77)( 64, 78)( 65, 79)( 66, 80)
( 67, 81)( 68, 82)( 69, 83)( 70, 84)( 85,106)( 86,107)( 87,108)( 88,109)
( 89,110)( 90,111)( 91,112)( 92, 99)( 93,100)( 94,101)( 95,102)( 96,103)
( 97,104)( 98,105);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(112)!(  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)
( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 30, 35)( 31, 34)
( 32, 33)( 37, 42)( 38, 41)( 39, 40)( 43, 50)( 44, 56)( 45, 55)( 46, 54)
( 47, 53)( 48, 52)( 49, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)( 61, 88)
( 62, 87)( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)
( 70, 93)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)( 77,107)
( 78, 99)( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100);
s1 := Sym(112)!(  1, 58)(  2, 57)(  3, 63)(  4, 62)(  5, 61)(  6, 60)(  7, 59)
(  8, 65)(  9, 64)( 10, 70)( 11, 69)( 12, 68)( 13, 67)( 14, 66)( 15, 72)
( 16, 71)( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 79)( 23, 78)
( 24, 84)( 25, 83)( 26, 82)( 27, 81)( 28, 80)( 29, 86)( 30, 85)( 31, 91)
( 32, 90)( 33, 89)( 34, 88)( 35, 87)( 36, 93)( 37, 92)( 38, 98)( 39, 97)
( 40, 96)( 41, 95)( 42, 94)( 43,100)( 44, 99)( 45,105)( 46,104)( 47,103)
( 48,102)( 49,101)( 50,107)( 51,106)( 52,112)( 53,111)( 54,110)( 55,109)
( 56,108);
s2 := Sym(112)!( 29, 36)( 30, 37)( 31, 38)( 32, 39)( 33, 40)( 34, 41)( 35, 42)
( 43, 50)( 44, 51)( 45, 52)( 46, 53)( 47, 54)( 48, 55)( 49, 56)( 57, 71)
( 58, 72)( 59, 73)( 60, 74)( 61, 75)( 62, 76)( 63, 77)( 64, 78)( 65, 79)
( 66, 80)( 67, 81)( 68, 82)( 69, 83)( 70, 84)( 85,106)( 86,107)( 87,108)
( 88,109)( 89,110)( 90,111)( 91,112)( 92, 99)( 93,100)( 94,101)( 95,102)
( 96,103)( 97,104)( 98,105);
poly := sub<Sym(112)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s2*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope