Polytope of Type {2,448}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,448}*1792
if this polytope has a name.
Group : SmallGroup(1792,90611)
Rank : 3
Schlafli Type : {2,448}
Number of vertices, edges, etc : 2, 448, 448
Order of s0s1s2 : 448
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,224}*896
   4-fold quotients : {2,112}*448
   7-fold quotients : {2,64}*256
   8-fold quotients : {2,56}*224
   14-fold quotients : {2,32}*128
   16-fold quotients : {2,28}*112
   28-fold quotients : {2,16}*64
   32-fold quotients : {2,14}*56
   56-fold quotients : {2,8}*32
   64-fold quotients : {2,7}*28
   112-fold quotients : {2,4}*16
   224-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  9)(  5,  8)(  6,  7)( 11, 16)( 12, 15)( 13, 14)( 17, 24)( 18, 30)
( 19, 29)( 20, 28)( 21, 27)( 22, 26)( 23, 25)( 31, 45)( 32, 51)( 33, 50)
( 34, 49)( 35, 48)( 36, 47)( 37, 46)( 38, 52)( 39, 58)( 40, 57)( 41, 56)
( 42, 55)( 43, 54)( 44, 53)( 59, 87)( 60, 93)( 61, 92)( 62, 91)( 63, 90)
( 64, 89)( 65, 88)( 66, 94)( 67,100)( 68, 99)( 69, 98)( 70, 97)( 71, 96)
( 72, 95)( 73,108)( 74,114)( 75,113)( 76,112)( 77,111)( 78,110)( 79,109)
( 80,101)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102)(115,171)
(116,177)(117,176)(118,175)(119,174)(120,173)(121,172)(122,178)(123,184)
(124,183)(125,182)(126,181)(127,180)(128,179)(129,192)(130,198)(131,197)
(132,196)(133,195)(134,194)(135,193)(136,185)(137,191)(138,190)(139,189)
(140,188)(141,187)(142,186)(143,213)(144,219)(145,218)(146,217)(147,216)
(148,215)(149,214)(150,220)(151,226)(152,225)(153,224)(154,223)(155,222)
(156,221)(157,199)(158,205)(159,204)(160,203)(161,202)(162,201)(163,200)
(164,206)(165,212)(166,211)(167,210)(168,209)(169,208)(170,207)(227,339)
(228,345)(229,344)(230,343)(231,342)(232,341)(233,340)(234,346)(235,352)
(236,351)(237,350)(238,349)(239,348)(240,347)(241,360)(242,366)(243,365)
(244,364)(245,363)(246,362)(247,361)(248,353)(249,359)(250,358)(251,357)
(252,356)(253,355)(254,354)(255,381)(256,387)(257,386)(258,385)(259,384)
(260,383)(261,382)(262,388)(263,394)(264,393)(265,392)(266,391)(267,390)
(268,389)(269,367)(270,373)(271,372)(272,371)(273,370)(274,369)(275,368)
(276,374)(277,380)(278,379)(279,378)(280,377)(281,376)(282,375)(283,423)
(284,429)(285,428)(286,427)(287,426)(288,425)(289,424)(290,430)(291,436)
(292,435)(293,434)(294,433)(295,432)(296,431)(297,444)(298,450)(299,449)
(300,448)(301,447)(302,446)(303,445)(304,437)(305,443)(306,442)(307,441)
(308,440)(309,439)(310,438)(311,395)(312,401)(313,400)(314,399)(315,398)
(316,397)(317,396)(318,402)(319,408)(320,407)(321,406)(322,405)(323,404)
(324,403)(325,416)(326,422)(327,421)(328,420)(329,419)(330,418)(331,417)
(332,409)(333,415)(334,414)(335,413)(336,412)(337,411)(338,410);;
s2 := (  3,228)(  4,227)(  5,233)(  6,232)(  7,231)(  8,230)(  9,229)( 10,235)
( 11,234)( 12,240)( 13,239)( 14,238)( 15,237)( 16,236)( 17,249)( 18,248)
( 19,254)( 20,253)( 21,252)( 22,251)( 23,250)( 24,242)( 25,241)( 26,247)
( 27,246)( 28,245)( 29,244)( 30,243)( 31,270)( 32,269)( 33,275)( 34,274)
( 35,273)( 36,272)( 37,271)( 38,277)( 39,276)( 40,282)( 41,281)( 42,280)
( 43,279)( 44,278)( 45,256)( 46,255)( 47,261)( 48,260)( 49,259)( 50,258)
( 51,257)( 52,263)( 53,262)( 54,268)( 55,267)( 56,266)( 57,265)( 58,264)
( 59,312)( 60,311)( 61,317)( 62,316)( 63,315)( 64,314)( 65,313)( 66,319)
( 67,318)( 68,324)( 69,323)( 70,322)( 71,321)( 72,320)( 73,333)( 74,332)
( 75,338)( 76,337)( 77,336)( 78,335)( 79,334)( 80,326)( 81,325)( 82,331)
( 83,330)( 84,329)( 85,328)( 86,327)( 87,284)( 88,283)( 89,289)( 90,288)
( 91,287)( 92,286)( 93,285)( 94,291)( 95,290)( 96,296)( 97,295)( 98,294)
( 99,293)(100,292)(101,305)(102,304)(103,310)(104,309)(105,308)(106,307)
(107,306)(108,298)(109,297)(110,303)(111,302)(112,301)(113,300)(114,299)
(115,396)(116,395)(117,401)(118,400)(119,399)(120,398)(121,397)(122,403)
(123,402)(124,408)(125,407)(126,406)(127,405)(128,404)(129,417)(130,416)
(131,422)(132,421)(133,420)(134,419)(135,418)(136,410)(137,409)(138,415)
(139,414)(140,413)(141,412)(142,411)(143,438)(144,437)(145,443)(146,442)
(147,441)(148,440)(149,439)(150,445)(151,444)(152,450)(153,449)(154,448)
(155,447)(156,446)(157,424)(158,423)(159,429)(160,428)(161,427)(162,426)
(163,425)(164,431)(165,430)(166,436)(167,435)(168,434)(169,433)(170,432)
(171,340)(172,339)(173,345)(174,344)(175,343)(176,342)(177,341)(178,347)
(179,346)(180,352)(181,351)(182,350)(183,349)(184,348)(185,361)(186,360)
(187,366)(188,365)(189,364)(190,363)(191,362)(192,354)(193,353)(194,359)
(195,358)(196,357)(197,356)(198,355)(199,382)(200,381)(201,387)(202,386)
(203,385)(204,384)(205,383)(206,389)(207,388)(208,394)(209,393)(210,392)
(211,391)(212,390)(213,368)(214,367)(215,373)(216,372)(217,371)(218,370)
(219,369)(220,375)(221,374)(222,380)(223,379)(224,378)(225,377)(226,376);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(450)!(1,2);
s1 := Sym(450)!(  4,  9)(  5,  8)(  6,  7)( 11, 16)( 12, 15)( 13, 14)( 17, 24)
( 18, 30)( 19, 29)( 20, 28)( 21, 27)( 22, 26)( 23, 25)( 31, 45)( 32, 51)
( 33, 50)( 34, 49)( 35, 48)( 36, 47)( 37, 46)( 38, 52)( 39, 58)( 40, 57)
( 41, 56)( 42, 55)( 43, 54)( 44, 53)( 59, 87)( 60, 93)( 61, 92)( 62, 91)
( 63, 90)( 64, 89)( 65, 88)( 66, 94)( 67,100)( 68, 99)( 69, 98)( 70, 97)
( 71, 96)( 72, 95)( 73,108)( 74,114)( 75,113)( 76,112)( 77,111)( 78,110)
( 79,109)( 80,101)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102)
(115,171)(116,177)(117,176)(118,175)(119,174)(120,173)(121,172)(122,178)
(123,184)(124,183)(125,182)(126,181)(127,180)(128,179)(129,192)(130,198)
(131,197)(132,196)(133,195)(134,194)(135,193)(136,185)(137,191)(138,190)
(139,189)(140,188)(141,187)(142,186)(143,213)(144,219)(145,218)(146,217)
(147,216)(148,215)(149,214)(150,220)(151,226)(152,225)(153,224)(154,223)
(155,222)(156,221)(157,199)(158,205)(159,204)(160,203)(161,202)(162,201)
(163,200)(164,206)(165,212)(166,211)(167,210)(168,209)(169,208)(170,207)
(227,339)(228,345)(229,344)(230,343)(231,342)(232,341)(233,340)(234,346)
(235,352)(236,351)(237,350)(238,349)(239,348)(240,347)(241,360)(242,366)
(243,365)(244,364)(245,363)(246,362)(247,361)(248,353)(249,359)(250,358)
(251,357)(252,356)(253,355)(254,354)(255,381)(256,387)(257,386)(258,385)
(259,384)(260,383)(261,382)(262,388)(263,394)(264,393)(265,392)(266,391)
(267,390)(268,389)(269,367)(270,373)(271,372)(272,371)(273,370)(274,369)
(275,368)(276,374)(277,380)(278,379)(279,378)(280,377)(281,376)(282,375)
(283,423)(284,429)(285,428)(286,427)(287,426)(288,425)(289,424)(290,430)
(291,436)(292,435)(293,434)(294,433)(295,432)(296,431)(297,444)(298,450)
(299,449)(300,448)(301,447)(302,446)(303,445)(304,437)(305,443)(306,442)
(307,441)(308,440)(309,439)(310,438)(311,395)(312,401)(313,400)(314,399)
(315,398)(316,397)(317,396)(318,402)(319,408)(320,407)(321,406)(322,405)
(323,404)(324,403)(325,416)(326,422)(327,421)(328,420)(329,419)(330,418)
(331,417)(332,409)(333,415)(334,414)(335,413)(336,412)(337,411)(338,410);
s2 := Sym(450)!(  3,228)(  4,227)(  5,233)(  6,232)(  7,231)(  8,230)(  9,229)
( 10,235)( 11,234)( 12,240)( 13,239)( 14,238)( 15,237)( 16,236)( 17,249)
( 18,248)( 19,254)( 20,253)( 21,252)( 22,251)( 23,250)( 24,242)( 25,241)
( 26,247)( 27,246)( 28,245)( 29,244)( 30,243)( 31,270)( 32,269)( 33,275)
( 34,274)( 35,273)( 36,272)( 37,271)( 38,277)( 39,276)( 40,282)( 41,281)
( 42,280)( 43,279)( 44,278)( 45,256)( 46,255)( 47,261)( 48,260)( 49,259)
( 50,258)( 51,257)( 52,263)( 53,262)( 54,268)( 55,267)( 56,266)( 57,265)
( 58,264)( 59,312)( 60,311)( 61,317)( 62,316)( 63,315)( 64,314)( 65,313)
( 66,319)( 67,318)( 68,324)( 69,323)( 70,322)( 71,321)( 72,320)( 73,333)
( 74,332)( 75,338)( 76,337)( 77,336)( 78,335)( 79,334)( 80,326)( 81,325)
( 82,331)( 83,330)( 84,329)( 85,328)( 86,327)( 87,284)( 88,283)( 89,289)
( 90,288)( 91,287)( 92,286)( 93,285)( 94,291)( 95,290)( 96,296)( 97,295)
( 98,294)( 99,293)(100,292)(101,305)(102,304)(103,310)(104,309)(105,308)
(106,307)(107,306)(108,298)(109,297)(110,303)(111,302)(112,301)(113,300)
(114,299)(115,396)(116,395)(117,401)(118,400)(119,399)(120,398)(121,397)
(122,403)(123,402)(124,408)(125,407)(126,406)(127,405)(128,404)(129,417)
(130,416)(131,422)(132,421)(133,420)(134,419)(135,418)(136,410)(137,409)
(138,415)(139,414)(140,413)(141,412)(142,411)(143,438)(144,437)(145,443)
(146,442)(147,441)(148,440)(149,439)(150,445)(151,444)(152,450)(153,449)
(154,448)(155,447)(156,446)(157,424)(158,423)(159,429)(160,428)(161,427)
(162,426)(163,425)(164,431)(165,430)(166,436)(167,435)(168,434)(169,433)
(170,432)(171,340)(172,339)(173,345)(174,344)(175,343)(176,342)(177,341)
(178,347)(179,346)(180,352)(181,351)(182,350)(183,349)(184,348)(185,361)
(186,360)(187,366)(188,365)(189,364)(190,363)(191,362)(192,354)(193,353)
(194,359)(195,358)(196,357)(197,356)(198,355)(199,382)(200,381)(201,387)
(202,386)(203,385)(204,384)(205,383)(206,389)(207,388)(208,394)(209,393)
(210,392)(211,391)(212,390)(213,368)(214,367)(215,373)(216,372)(217,371)
(218,370)(219,369)(220,375)(221,374)(222,380)(223,379)(224,378)(225,377)
(226,376);
poly := sub<Sym(450)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope