include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {448,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {448,2}*1792
if this polytope has a name.
Group : SmallGroup(1792,90611)
Rank : 3
Schlafli Type : {448,2}
Number of vertices, edges, etc : 448, 448, 2
Order of s0s1s2 : 448
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {224,2}*896
4-fold quotients : {112,2}*448
7-fold quotients : {64,2}*256
8-fold quotients : {56,2}*224
14-fold quotients : {32,2}*128
16-fold quotients : {28,2}*112
28-fold quotients : {16,2}*64
32-fold quotients : {14,2}*56
56-fold quotients : {8,2}*32
64-fold quotients : {7,2}*28
112-fold quotients : {4,2}*16
224-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 15, 22)( 16, 28)
( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 29, 43)( 30, 49)( 31, 48)
( 32, 47)( 33, 46)( 34, 45)( 35, 44)( 36, 50)( 37, 56)( 38, 55)( 39, 54)
( 40, 53)( 41, 52)( 42, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)( 61, 88)
( 62, 87)( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)( 69, 94)
( 70, 93)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)( 77,107)
( 78, 99)( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100)(113,169)
(114,175)(115,174)(116,173)(117,172)(118,171)(119,170)(120,176)(121,182)
(122,181)(123,180)(124,179)(125,178)(126,177)(127,190)(128,196)(129,195)
(130,194)(131,193)(132,192)(133,191)(134,183)(135,189)(136,188)(137,187)
(138,186)(139,185)(140,184)(141,211)(142,217)(143,216)(144,215)(145,214)
(146,213)(147,212)(148,218)(149,224)(150,223)(151,222)(152,221)(153,220)
(154,219)(155,197)(156,203)(157,202)(158,201)(159,200)(160,199)(161,198)
(162,204)(163,210)(164,209)(165,208)(166,207)(167,206)(168,205)(225,337)
(226,343)(227,342)(228,341)(229,340)(230,339)(231,338)(232,344)(233,350)
(234,349)(235,348)(236,347)(237,346)(238,345)(239,358)(240,364)(241,363)
(242,362)(243,361)(244,360)(245,359)(246,351)(247,357)(248,356)(249,355)
(250,354)(251,353)(252,352)(253,379)(254,385)(255,384)(256,383)(257,382)
(258,381)(259,380)(260,386)(261,392)(262,391)(263,390)(264,389)(265,388)
(266,387)(267,365)(268,371)(269,370)(270,369)(271,368)(272,367)(273,366)
(274,372)(275,378)(276,377)(277,376)(278,375)(279,374)(280,373)(281,421)
(282,427)(283,426)(284,425)(285,424)(286,423)(287,422)(288,428)(289,434)
(290,433)(291,432)(292,431)(293,430)(294,429)(295,442)(296,448)(297,447)
(298,446)(299,445)(300,444)(301,443)(302,435)(303,441)(304,440)(305,439)
(306,438)(307,437)(308,436)(309,393)(310,399)(311,398)(312,397)(313,396)
(314,395)(315,394)(316,400)(317,406)(318,405)(319,404)(320,403)(321,402)
(322,401)(323,414)(324,420)(325,419)(326,418)(327,417)(328,416)(329,415)
(330,407)(331,413)(332,412)(333,411)(334,410)(335,409)(336,408);;
s1 := ( 1,226)( 2,225)( 3,231)( 4,230)( 5,229)( 6,228)( 7,227)( 8,233)
( 9,232)( 10,238)( 11,237)( 12,236)( 13,235)( 14,234)( 15,247)( 16,246)
( 17,252)( 18,251)( 19,250)( 20,249)( 21,248)( 22,240)( 23,239)( 24,245)
( 25,244)( 26,243)( 27,242)( 28,241)( 29,268)( 30,267)( 31,273)( 32,272)
( 33,271)( 34,270)( 35,269)( 36,275)( 37,274)( 38,280)( 39,279)( 40,278)
( 41,277)( 42,276)( 43,254)( 44,253)( 45,259)( 46,258)( 47,257)( 48,256)
( 49,255)( 50,261)( 51,260)( 52,266)( 53,265)( 54,264)( 55,263)( 56,262)
( 57,310)( 58,309)( 59,315)( 60,314)( 61,313)( 62,312)( 63,311)( 64,317)
( 65,316)( 66,322)( 67,321)( 68,320)( 69,319)( 70,318)( 71,331)( 72,330)
( 73,336)( 74,335)( 75,334)( 76,333)( 77,332)( 78,324)( 79,323)( 80,329)
( 81,328)( 82,327)( 83,326)( 84,325)( 85,282)( 86,281)( 87,287)( 88,286)
( 89,285)( 90,284)( 91,283)( 92,289)( 93,288)( 94,294)( 95,293)( 96,292)
( 97,291)( 98,290)( 99,303)(100,302)(101,308)(102,307)(103,306)(104,305)
(105,304)(106,296)(107,295)(108,301)(109,300)(110,299)(111,298)(112,297)
(113,394)(114,393)(115,399)(116,398)(117,397)(118,396)(119,395)(120,401)
(121,400)(122,406)(123,405)(124,404)(125,403)(126,402)(127,415)(128,414)
(129,420)(130,419)(131,418)(132,417)(133,416)(134,408)(135,407)(136,413)
(137,412)(138,411)(139,410)(140,409)(141,436)(142,435)(143,441)(144,440)
(145,439)(146,438)(147,437)(148,443)(149,442)(150,448)(151,447)(152,446)
(153,445)(154,444)(155,422)(156,421)(157,427)(158,426)(159,425)(160,424)
(161,423)(162,429)(163,428)(164,434)(165,433)(166,432)(167,431)(168,430)
(169,338)(170,337)(171,343)(172,342)(173,341)(174,340)(175,339)(176,345)
(177,344)(178,350)(179,349)(180,348)(181,347)(182,346)(183,359)(184,358)
(185,364)(186,363)(187,362)(188,361)(189,360)(190,352)(191,351)(192,357)
(193,356)(194,355)(195,354)(196,353)(197,380)(198,379)(199,385)(200,384)
(201,383)(202,382)(203,381)(204,387)(205,386)(206,392)(207,391)(208,390)
(209,389)(210,388)(211,366)(212,365)(213,371)(214,370)(215,369)(216,368)
(217,367)(218,373)(219,372)(220,378)(221,377)(222,376)(223,375)(224,374);;
s2 := (449,450);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(450)!( 2, 7)( 3, 6)( 4, 5)( 9, 14)( 10, 13)( 11, 12)( 15, 22)
( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 29, 43)( 30, 49)
( 31, 48)( 32, 47)( 33, 46)( 34, 45)( 35, 44)( 36, 50)( 37, 56)( 38, 55)
( 39, 54)( 40, 53)( 41, 52)( 42, 51)( 57, 85)( 58, 91)( 59, 90)( 60, 89)
( 61, 88)( 62, 87)( 63, 86)( 64, 92)( 65, 98)( 66, 97)( 67, 96)( 68, 95)
( 69, 94)( 70, 93)( 71,106)( 72,112)( 73,111)( 74,110)( 75,109)( 76,108)
( 77,107)( 78, 99)( 79,105)( 80,104)( 81,103)( 82,102)( 83,101)( 84,100)
(113,169)(114,175)(115,174)(116,173)(117,172)(118,171)(119,170)(120,176)
(121,182)(122,181)(123,180)(124,179)(125,178)(126,177)(127,190)(128,196)
(129,195)(130,194)(131,193)(132,192)(133,191)(134,183)(135,189)(136,188)
(137,187)(138,186)(139,185)(140,184)(141,211)(142,217)(143,216)(144,215)
(145,214)(146,213)(147,212)(148,218)(149,224)(150,223)(151,222)(152,221)
(153,220)(154,219)(155,197)(156,203)(157,202)(158,201)(159,200)(160,199)
(161,198)(162,204)(163,210)(164,209)(165,208)(166,207)(167,206)(168,205)
(225,337)(226,343)(227,342)(228,341)(229,340)(230,339)(231,338)(232,344)
(233,350)(234,349)(235,348)(236,347)(237,346)(238,345)(239,358)(240,364)
(241,363)(242,362)(243,361)(244,360)(245,359)(246,351)(247,357)(248,356)
(249,355)(250,354)(251,353)(252,352)(253,379)(254,385)(255,384)(256,383)
(257,382)(258,381)(259,380)(260,386)(261,392)(262,391)(263,390)(264,389)
(265,388)(266,387)(267,365)(268,371)(269,370)(270,369)(271,368)(272,367)
(273,366)(274,372)(275,378)(276,377)(277,376)(278,375)(279,374)(280,373)
(281,421)(282,427)(283,426)(284,425)(285,424)(286,423)(287,422)(288,428)
(289,434)(290,433)(291,432)(292,431)(293,430)(294,429)(295,442)(296,448)
(297,447)(298,446)(299,445)(300,444)(301,443)(302,435)(303,441)(304,440)
(305,439)(306,438)(307,437)(308,436)(309,393)(310,399)(311,398)(312,397)
(313,396)(314,395)(315,394)(316,400)(317,406)(318,405)(319,404)(320,403)
(321,402)(322,401)(323,414)(324,420)(325,419)(326,418)(327,417)(328,416)
(329,415)(330,407)(331,413)(332,412)(333,411)(334,410)(335,409)(336,408);
s1 := Sym(450)!( 1,226)( 2,225)( 3,231)( 4,230)( 5,229)( 6,228)( 7,227)
( 8,233)( 9,232)( 10,238)( 11,237)( 12,236)( 13,235)( 14,234)( 15,247)
( 16,246)( 17,252)( 18,251)( 19,250)( 20,249)( 21,248)( 22,240)( 23,239)
( 24,245)( 25,244)( 26,243)( 27,242)( 28,241)( 29,268)( 30,267)( 31,273)
( 32,272)( 33,271)( 34,270)( 35,269)( 36,275)( 37,274)( 38,280)( 39,279)
( 40,278)( 41,277)( 42,276)( 43,254)( 44,253)( 45,259)( 46,258)( 47,257)
( 48,256)( 49,255)( 50,261)( 51,260)( 52,266)( 53,265)( 54,264)( 55,263)
( 56,262)( 57,310)( 58,309)( 59,315)( 60,314)( 61,313)( 62,312)( 63,311)
( 64,317)( 65,316)( 66,322)( 67,321)( 68,320)( 69,319)( 70,318)( 71,331)
( 72,330)( 73,336)( 74,335)( 75,334)( 76,333)( 77,332)( 78,324)( 79,323)
( 80,329)( 81,328)( 82,327)( 83,326)( 84,325)( 85,282)( 86,281)( 87,287)
( 88,286)( 89,285)( 90,284)( 91,283)( 92,289)( 93,288)( 94,294)( 95,293)
( 96,292)( 97,291)( 98,290)( 99,303)(100,302)(101,308)(102,307)(103,306)
(104,305)(105,304)(106,296)(107,295)(108,301)(109,300)(110,299)(111,298)
(112,297)(113,394)(114,393)(115,399)(116,398)(117,397)(118,396)(119,395)
(120,401)(121,400)(122,406)(123,405)(124,404)(125,403)(126,402)(127,415)
(128,414)(129,420)(130,419)(131,418)(132,417)(133,416)(134,408)(135,407)
(136,413)(137,412)(138,411)(139,410)(140,409)(141,436)(142,435)(143,441)
(144,440)(145,439)(146,438)(147,437)(148,443)(149,442)(150,448)(151,447)
(152,446)(153,445)(154,444)(155,422)(156,421)(157,427)(158,426)(159,425)
(160,424)(161,423)(162,429)(163,428)(164,434)(165,433)(166,432)(167,431)
(168,430)(169,338)(170,337)(171,343)(172,342)(173,341)(174,340)(175,339)
(176,345)(177,344)(178,350)(179,349)(180,348)(181,347)(182,346)(183,359)
(184,358)(185,364)(186,363)(187,362)(188,361)(189,360)(190,352)(191,351)
(192,357)(193,356)(194,355)(195,354)(196,353)(197,380)(198,379)(199,385)
(200,384)(201,383)(202,382)(203,381)(204,387)(205,386)(206,392)(207,391)
(208,390)(209,389)(210,388)(211,366)(212,365)(213,371)(214,370)(215,369)
(216,368)(217,367)(218,373)(219,372)(220,378)(221,377)(222,376)(223,375)
(224,374);
s2 := Sym(450)!(449,450);
poly := sub<Sym(450)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope