include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,30}*1800
if this polytope has a name.
Group : SmallGroup(1800,664)
Rank : 3
Schlafli Type : {4,30}
Number of vertices, edges, etc : 30, 450, 225
Order of s0s1s2 : 4
Order of s0s1s2s1 : 30
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Non-Orientable
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
9-fold quotients : {4,10}*200
25-fold quotients : {4,6}*72
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 12)( 3, 23)( 4, 9)( 5, 20)( 6, 21)( 8, 18)( 10, 15)( 11, 16)
( 14, 24)( 17, 22)( 27, 37)( 28, 48)( 29, 34)( 30, 45)( 31, 46)( 33, 43)
( 35, 40)( 36, 41)( 39, 49)( 42, 47)( 52, 62)( 53, 73)( 54, 59)( 55, 70)
( 56, 71)( 58, 68)( 60, 65)( 61, 66)( 64, 74)( 67, 72)( 76,151)( 77,162)
( 78,173)( 79,159)( 80,170)( 81,171)( 82,157)( 83,168)( 84,154)( 85,165)
( 86,166)( 87,152)( 88,163)( 89,174)( 90,160)( 91,161)( 92,172)( 93,158)
( 94,169)( 95,155)( 96,156)( 97,167)( 98,153)( 99,164)(100,175)(101,176)
(102,187)(103,198)(104,184)(105,195)(106,196)(107,182)(108,193)(109,179)
(110,190)(111,191)(112,177)(113,188)(114,199)(115,185)(116,186)(117,197)
(118,183)(119,194)(120,180)(121,181)(122,192)(123,178)(124,189)(125,200)
(126,201)(127,212)(128,223)(129,209)(130,220)(131,221)(132,207)(133,218)
(134,204)(135,215)(136,216)(137,202)(138,213)(139,224)(140,210)(141,211)
(142,222)(143,208)(144,219)(145,205)(146,206)(147,217)(148,203)(149,214)
(150,225);;
s1 := ( 2, 9)( 3, 12)( 4, 20)( 5, 23)( 6, 13)( 7, 16)( 8, 24)( 11, 25)
( 15, 17)( 19, 21)( 26,151)( 27,159)( 28,162)( 29,170)( 30,173)( 31,163)
( 32,166)( 33,174)( 34,152)( 35,160)( 36,175)( 37,153)( 38,156)( 39,164)
( 40,167)( 41,157)( 42,165)( 43,168)( 44,171)( 45,154)( 46,169)( 47,172)
( 48,155)( 49,158)( 50,161)( 51, 76)( 52, 84)( 53, 87)( 54, 95)( 55, 98)
( 56, 88)( 57, 91)( 58, 99)( 59, 77)( 60, 85)( 61,100)( 62, 78)( 63, 81)
( 64, 89)( 65, 92)( 66, 82)( 67, 90)( 68, 93)( 69, 96)( 70, 79)( 71, 94)
( 72, 97)( 73, 80)( 74, 83)( 75, 86)(101,201)(102,209)(103,212)(104,220)
(105,223)(106,213)(107,216)(108,224)(109,202)(110,210)(111,225)(112,203)
(113,206)(114,214)(115,217)(116,207)(117,215)(118,218)(119,221)(120,204)
(121,219)(122,222)(123,205)(124,208)(125,211)(127,134)(128,137)(129,145)
(130,148)(131,138)(132,141)(133,149)(136,150)(140,142)(144,146)(177,184)
(178,187)(179,195)(180,198)(181,188)(182,191)(183,199)(186,200)(190,192)
(194,196);;
s2 := ( 1, 32)( 2, 31)( 3, 35)( 4, 34)( 5, 33)( 6, 27)( 7, 26)( 8, 30)
( 9, 29)( 10, 28)( 11, 47)( 12, 46)( 13, 50)( 14, 49)( 15, 48)( 16, 42)
( 17, 41)( 18, 45)( 19, 44)( 20, 43)( 21, 37)( 22, 36)( 23, 40)( 24, 39)
( 25, 38)( 51, 57)( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 72)( 62, 71)
( 63, 75)( 64, 74)( 65, 73)( 66, 67)( 68, 70)( 76,182)( 77,181)( 78,185)
( 79,184)( 80,183)( 81,177)( 82,176)( 83,180)( 84,179)( 85,178)( 86,197)
( 87,196)( 88,200)( 89,199)( 90,198)( 91,192)( 92,191)( 93,195)( 94,194)
( 95,193)( 96,187)( 97,186)( 98,190)( 99,189)(100,188)(101,157)(102,156)
(103,160)(104,159)(105,158)(106,152)(107,151)(108,155)(109,154)(110,153)
(111,172)(112,171)(113,175)(114,174)(115,173)(116,167)(117,166)(118,170)
(119,169)(120,168)(121,162)(122,161)(123,165)(124,164)(125,163)(126,207)
(127,206)(128,210)(129,209)(130,208)(131,202)(132,201)(133,205)(134,204)
(135,203)(136,222)(137,221)(138,225)(139,224)(140,223)(141,217)(142,216)
(143,220)(144,219)(145,218)(146,212)(147,211)(148,215)(149,214)(150,213);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(225)!( 2, 12)( 3, 23)( 4, 9)( 5, 20)( 6, 21)( 8, 18)( 10, 15)
( 11, 16)( 14, 24)( 17, 22)( 27, 37)( 28, 48)( 29, 34)( 30, 45)( 31, 46)
( 33, 43)( 35, 40)( 36, 41)( 39, 49)( 42, 47)( 52, 62)( 53, 73)( 54, 59)
( 55, 70)( 56, 71)( 58, 68)( 60, 65)( 61, 66)( 64, 74)( 67, 72)( 76,151)
( 77,162)( 78,173)( 79,159)( 80,170)( 81,171)( 82,157)( 83,168)( 84,154)
( 85,165)( 86,166)( 87,152)( 88,163)( 89,174)( 90,160)( 91,161)( 92,172)
( 93,158)( 94,169)( 95,155)( 96,156)( 97,167)( 98,153)( 99,164)(100,175)
(101,176)(102,187)(103,198)(104,184)(105,195)(106,196)(107,182)(108,193)
(109,179)(110,190)(111,191)(112,177)(113,188)(114,199)(115,185)(116,186)
(117,197)(118,183)(119,194)(120,180)(121,181)(122,192)(123,178)(124,189)
(125,200)(126,201)(127,212)(128,223)(129,209)(130,220)(131,221)(132,207)
(133,218)(134,204)(135,215)(136,216)(137,202)(138,213)(139,224)(140,210)
(141,211)(142,222)(143,208)(144,219)(145,205)(146,206)(147,217)(148,203)
(149,214)(150,225);
s1 := Sym(225)!( 2, 9)( 3, 12)( 4, 20)( 5, 23)( 6, 13)( 7, 16)( 8, 24)
( 11, 25)( 15, 17)( 19, 21)( 26,151)( 27,159)( 28,162)( 29,170)( 30,173)
( 31,163)( 32,166)( 33,174)( 34,152)( 35,160)( 36,175)( 37,153)( 38,156)
( 39,164)( 40,167)( 41,157)( 42,165)( 43,168)( 44,171)( 45,154)( 46,169)
( 47,172)( 48,155)( 49,158)( 50,161)( 51, 76)( 52, 84)( 53, 87)( 54, 95)
( 55, 98)( 56, 88)( 57, 91)( 58, 99)( 59, 77)( 60, 85)( 61,100)( 62, 78)
( 63, 81)( 64, 89)( 65, 92)( 66, 82)( 67, 90)( 68, 93)( 69, 96)( 70, 79)
( 71, 94)( 72, 97)( 73, 80)( 74, 83)( 75, 86)(101,201)(102,209)(103,212)
(104,220)(105,223)(106,213)(107,216)(108,224)(109,202)(110,210)(111,225)
(112,203)(113,206)(114,214)(115,217)(116,207)(117,215)(118,218)(119,221)
(120,204)(121,219)(122,222)(123,205)(124,208)(125,211)(127,134)(128,137)
(129,145)(130,148)(131,138)(132,141)(133,149)(136,150)(140,142)(144,146)
(177,184)(178,187)(179,195)(180,198)(181,188)(182,191)(183,199)(186,200)
(190,192)(194,196);
s2 := Sym(225)!( 1, 32)( 2, 31)( 3, 35)( 4, 34)( 5, 33)( 6, 27)( 7, 26)
( 8, 30)( 9, 29)( 10, 28)( 11, 47)( 12, 46)( 13, 50)( 14, 49)( 15, 48)
( 16, 42)( 17, 41)( 18, 45)( 19, 44)( 20, 43)( 21, 37)( 22, 36)( 23, 40)
( 24, 39)( 25, 38)( 51, 57)( 52, 56)( 53, 60)( 54, 59)( 55, 58)( 61, 72)
( 62, 71)( 63, 75)( 64, 74)( 65, 73)( 66, 67)( 68, 70)( 76,182)( 77,181)
( 78,185)( 79,184)( 80,183)( 81,177)( 82,176)( 83,180)( 84,179)( 85,178)
( 86,197)( 87,196)( 88,200)( 89,199)( 90,198)( 91,192)( 92,191)( 93,195)
( 94,194)( 95,193)( 96,187)( 97,186)( 98,190)( 99,189)(100,188)(101,157)
(102,156)(103,160)(104,159)(105,158)(106,152)(107,151)(108,155)(109,154)
(110,153)(111,172)(112,171)(113,175)(114,174)(115,173)(116,167)(117,166)
(118,170)(119,169)(120,168)(121,162)(122,161)(123,165)(124,164)(125,163)
(126,207)(127,206)(128,210)(129,209)(130,208)(131,202)(132,201)(133,205)
(134,204)(135,203)(136,222)(137,221)(138,225)(139,224)(140,223)(141,217)
(142,216)(143,220)(144,219)(145,218)(146,212)(147,211)(148,215)(149,214)
(150,213);
poly := sub<Sym(225)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1 >;
References : None.
to this polytope