include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {30,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,30}*1800f
if this polytope has a name.
Group : SmallGroup(1800,678)
Rank : 3
Schlafli Type : {30,30}
Number of vertices, edges, etc : 30, 450, 30
Order of s0s1s2 : 30
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {10,30}*600a, {30,10}*600c
5-fold quotients : {30,6}*360b
6-fold quotients : {15,10}*300
9-fold quotients : {10,10}*200c
15-fold quotients : {10,6}*120, {30,2}*120
18-fold quotients : {5,10}*100
25-fold quotients : {6,6}*72a
30-fold quotients : {15,2}*60
45-fold quotients : {10,2}*40
75-fold quotients : {2,6}*24, {6,2}*24
90-fold quotients : {5,2}*20
150-fold quotients : {2,3}*12, {3,2}*12
225-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6, 21)( 7, 25)( 8, 24)( 9, 23)( 10, 22)( 11, 16)
( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)( 61, 66)
( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 76,151)( 77,155)( 78,154)( 79,153)
( 80,152)( 81,171)( 82,175)( 83,174)( 84,173)( 85,172)( 86,166)( 87,170)
( 88,169)( 89,168)( 90,167)( 91,161)( 92,165)( 93,164)( 94,163)( 95,162)
( 96,156)( 97,160)( 98,159)( 99,158)(100,157)(101,176)(102,180)(103,179)
(104,178)(105,177)(106,196)(107,200)(108,199)(109,198)(110,197)(111,191)
(112,195)(113,194)(114,193)(115,192)(116,186)(117,190)(118,189)(119,188)
(120,187)(121,181)(122,185)(123,184)(124,183)(125,182)(126,201)(127,205)
(128,204)(129,203)(130,202)(131,221)(132,225)(133,224)(134,223)(135,222)
(136,216)(137,220)(138,219)(139,218)(140,217)(141,211)(142,215)(143,214)
(144,213)(145,212)(146,206)(147,210)(148,209)(149,208)(150,207);;
s1 := ( 1, 82)( 2, 81)( 3, 85)( 4, 84)( 5, 83)( 6, 77)( 7, 76)( 8, 80)
( 9, 79)( 10, 78)( 11, 97)( 12, 96)( 13,100)( 14, 99)( 15, 98)( 16, 92)
( 17, 91)( 18, 95)( 19, 94)( 20, 93)( 21, 87)( 22, 86)( 23, 90)( 24, 89)
( 25, 88)( 26,132)( 27,131)( 28,135)( 29,134)( 30,133)( 31,127)( 32,126)
( 33,130)( 34,129)( 35,128)( 36,147)( 37,146)( 38,150)( 39,149)( 40,148)
( 41,142)( 42,141)( 43,145)( 44,144)( 45,143)( 46,137)( 47,136)( 48,140)
( 49,139)( 50,138)( 51,107)( 52,106)( 53,110)( 54,109)( 55,108)( 56,102)
( 57,101)( 58,105)( 59,104)( 60,103)( 61,122)( 62,121)( 63,125)( 64,124)
( 65,123)( 66,117)( 67,116)( 68,120)( 69,119)( 70,118)( 71,112)( 72,111)
( 73,115)( 74,114)( 75,113)(151,157)(152,156)(153,160)(154,159)(155,158)
(161,172)(162,171)(163,175)(164,174)(165,173)(166,167)(168,170)(176,207)
(177,206)(178,210)(179,209)(180,208)(181,202)(182,201)(183,205)(184,204)
(185,203)(186,222)(187,221)(188,225)(189,224)(190,223)(191,217)(192,216)
(193,220)(194,219)(195,218)(196,212)(197,211)(198,215)(199,214)(200,213);;
s2 := ( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 31)( 7, 35)( 8, 34)
( 9, 33)( 10, 32)( 11, 36)( 12, 40)( 13, 39)( 14, 38)( 15, 37)( 16, 41)
( 17, 45)( 18, 44)( 19, 43)( 20, 42)( 21, 46)( 22, 50)( 23, 49)( 24, 48)
( 25, 47)( 52, 55)( 53, 54)( 57, 60)( 58, 59)( 62, 65)( 63, 64)( 67, 70)
( 68, 69)( 72, 75)( 73, 74)( 76,101)( 77,105)( 78,104)( 79,103)( 80,102)
( 81,106)( 82,110)( 83,109)( 84,108)( 85,107)( 86,111)( 87,115)( 88,114)
( 89,113)( 90,112)( 91,116)( 92,120)( 93,119)( 94,118)( 95,117)( 96,121)
( 97,125)( 98,124)( 99,123)(100,122)(127,130)(128,129)(132,135)(133,134)
(137,140)(138,139)(142,145)(143,144)(147,150)(148,149)(151,176)(152,180)
(153,179)(154,178)(155,177)(156,181)(157,185)(158,184)(159,183)(160,182)
(161,186)(162,190)(163,189)(164,188)(165,187)(166,191)(167,195)(168,194)
(169,193)(170,192)(171,196)(172,200)(173,199)(174,198)(175,197)(202,205)
(203,204)(207,210)(208,209)(212,215)(213,214)(217,220)(218,219)(222,225)
(223,224);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(225)!( 2, 5)( 3, 4)( 6, 21)( 7, 25)( 8, 24)( 9, 23)( 10, 22)
( 11, 16)( 12, 20)( 13, 19)( 14, 18)( 15, 17)( 27, 30)( 28, 29)( 31, 46)
( 32, 50)( 33, 49)( 34, 48)( 35, 47)( 36, 41)( 37, 45)( 38, 44)( 39, 43)
( 40, 42)( 52, 55)( 53, 54)( 56, 71)( 57, 75)( 58, 74)( 59, 73)( 60, 72)
( 61, 66)( 62, 70)( 63, 69)( 64, 68)( 65, 67)( 76,151)( 77,155)( 78,154)
( 79,153)( 80,152)( 81,171)( 82,175)( 83,174)( 84,173)( 85,172)( 86,166)
( 87,170)( 88,169)( 89,168)( 90,167)( 91,161)( 92,165)( 93,164)( 94,163)
( 95,162)( 96,156)( 97,160)( 98,159)( 99,158)(100,157)(101,176)(102,180)
(103,179)(104,178)(105,177)(106,196)(107,200)(108,199)(109,198)(110,197)
(111,191)(112,195)(113,194)(114,193)(115,192)(116,186)(117,190)(118,189)
(119,188)(120,187)(121,181)(122,185)(123,184)(124,183)(125,182)(126,201)
(127,205)(128,204)(129,203)(130,202)(131,221)(132,225)(133,224)(134,223)
(135,222)(136,216)(137,220)(138,219)(139,218)(140,217)(141,211)(142,215)
(143,214)(144,213)(145,212)(146,206)(147,210)(148,209)(149,208)(150,207);
s1 := Sym(225)!( 1, 82)( 2, 81)( 3, 85)( 4, 84)( 5, 83)( 6, 77)( 7, 76)
( 8, 80)( 9, 79)( 10, 78)( 11, 97)( 12, 96)( 13,100)( 14, 99)( 15, 98)
( 16, 92)( 17, 91)( 18, 95)( 19, 94)( 20, 93)( 21, 87)( 22, 86)( 23, 90)
( 24, 89)( 25, 88)( 26,132)( 27,131)( 28,135)( 29,134)( 30,133)( 31,127)
( 32,126)( 33,130)( 34,129)( 35,128)( 36,147)( 37,146)( 38,150)( 39,149)
( 40,148)( 41,142)( 42,141)( 43,145)( 44,144)( 45,143)( 46,137)( 47,136)
( 48,140)( 49,139)( 50,138)( 51,107)( 52,106)( 53,110)( 54,109)( 55,108)
( 56,102)( 57,101)( 58,105)( 59,104)( 60,103)( 61,122)( 62,121)( 63,125)
( 64,124)( 65,123)( 66,117)( 67,116)( 68,120)( 69,119)( 70,118)( 71,112)
( 72,111)( 73,115)( 74,114)( 75,113)(151,157)(152,156)(153,160)(154,159)
(155,158)(161,172)(162,171)(163,175)(164,174)(165,173)(166,167)(168,170)
(176,207)(177,206)(178,210)(179,209)(180,208)(181,202)(182,201)(183,205)
(184,204)(185,203)(186,222)(187,221)(188,225)(189,224)(190,223)(191,217)
(192,216)(193,220)(194,219)(195,218)(196,212)(197,211)(198,215)(199,214)
(200,213);
s2 := Sym(225)!( 1, 26)( 2, 30)( 3, 29)( 4, 28)( 5, 27)( 6, 31)( 7, 35)
( 8, 34)( 9, 33)( 10, 32)( 11, 36)( 12, 40)( 13, 39)( 14, 38)( 15, 37)
( 16, 41)( 17, 45)( 18, 44)( 19, 43)( 20, 42)( 21, 46)( 22, 50)( 23, 49)
( 24, 48)( 25, 47)( 52, 55)( 53, 54)( 57, 60)( 58, 59)( 62, 65)( 63, 64)
( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 76,101)( 77,105)( 78,104)( 79,103)
( 80,102)( 81,106)( 82,110)( 83,109)( 84,108)( 85,107)( 86,111)( 87,115)
( 88,114)( 89,113)( 90,112)( 91,116)( 92,120)( 93,119)( 94,118)( 95,117)
( 96,121)( 97,125)( 98,124)( 99,123)(100,122)(127,130)(128,129)(132,135)
(133,134)(137,140)(138,139)(142,145)(143,144)(147,150)(148,149)(151,176)
(152,180)(153,179)(154,178)(155,177)(156,181)(157,185)(158,184)(159,183)
(160,182)(161,186)(162,190)(163,189)(164,188)(165,187)(166,191)(167,195)
(168,194)(169,193)(170,192)(171,196)(172,200)(173,199)(174,198)(175,197)
(202,205)(203,204)(207,210)(208,209)(212,215)(213,214)(217,220)(218,219)
(222,225)(223,224);
poly := sub<Sym(225)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope