Polytope of Type {2,452}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,452}*1808
if this polytope has a name.
Group : SmallGroup(1808,36)
Rank : 3
Schlafli Type : {2,452}
Number of vertices, edges, etc : 2, 452, 452
Order of s0s1s2 : 452
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,226}*904
   4-fold quotients : {2,113}*452
   113-fold quotients : {2,4}*16
   226-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,115)(  5,114)(  6,113)(  7,112)(  8,111)(  9,110)( 10,109)( 11,108)
( 12,107)( 13,106)( 14,105)( 15,104)( 16,103)( 17,102)( 18,101)( 19,100)
( 20, 99)( 21, 98)( 22, 97)( 23, 96)( 24, 95)( 25, 94)( 26, 93)( 27, 92)
( 28, 91)( 29, 90)( 30, 89)( 31, 88)( 32, 87)( 33, 86)( 34, 85)( 35, 84)
( 36, 83)( 37, 82)( 38, 81)( 39, 80)( 40, 79)( 41, 78)( 42, 77)( 43, 76)
( 44, 75)( 45, 74)( 46, 73)( 47, 72)( 48, 71)( 49, 70)( 50, 69)( 51, 68)
( 52, 67)( 53, 66)( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)
(117,228)(118,227)(119,226)(120,225)(121,224)(122,223)(123,222)(124,221)
(125,220)(126,219)(127,218)(128,217)(129,216)(130,215)(131,214)(132,213)
(133,212)(134,211)(135,210)(136,209)(137,208)(138,207)(139,206)(140,205)
(141,204)(142,203)(143,202)(144,201)(145,200)(146,199)(147,198)(148,197)
(149,196)(150,195)(151,194)(152,193)(153,192)(154,191)(155,190)(156,189)
(157,188)(158,187)(159,186)(160,185)(161,184)(162,183)(163,182)(164,181)
(165,180)(166,179)(167,178)(168,177)(169,176)(170,175)(171,174)(172,173)
(229,342)(230,454)(231,453)(232,452)(233,451)(234,450)(235,449)(236,448)
(237,447)(238,446)(239,445)(240,444)(241,443)(242,442)(243,441)(244,440)
(245,439)(246,438)(247,437)(248,436)(249,435)(250,434)(251,433)(252,432)
(253,431)(254,430)(255,429)(256,428)(257,427)(258,426)(259,425)(260,424)
(261,423)(262,422)(263,421)(264,420)(265,419)(266,418)(267,417)(268,416)
(269,415)(270,414)(271,413)(272,412)(273,411)(274,410)(275,409)(276,408)
(277,407)(278,406)(279,405)(280,404)(281,403)(282,402)(283,401)(284,400)
(285,399)(286,398)(287,397)(288,396)(289,395)(290,394)(291,393)(292,392)
(293,391)(294,390)(295,389)(296,388)(297,387)(298,386)(299,385)(300,384)
(301,383)(302,382)(303,381)(304,380)(305,379)(306,378)(307,377)(308,376)
(309,375)(310,374)(311,373)(312,372)(313,371)(314,370)(315,369)(316,368)
(317,367)(318,366)(319,365)(320,364)(321,363)(322,362)(323,361)(324,360)
(325,359)(326,358)(327,357)(328,356)(329,355)(330,354)(331,353)(332,352)
(333,351)(334,350)(335,349)(336,348)(337,347)(338,346)(339,345)(340,344)
(341,343);;
s2 := (  3,230)(  4,229)(  5,341)(  6,340)(  7,339)(  8,338)(  9,337)( 10,336)
( 11,335)( 12,334)( 13,333)( 14,332)( 15,331)( 16,330)( 17,329)( 18,328)
( 19,327)( 20,326)( 21,325)( 22,324)( 23,323)( 24,322)( 25,321)( 26,320)
( 27,319)( 28,318)( 29,317)( 30,316)( 31,315)( 32,314)( 33,313)( 34,312)
( 35,311)( 36,310)( 37,309)( 38,308)( 39,307)( 40,306)( 41,305)( 42,304)
( 43,303)( 44,302)( 45,301)( 46,300)( 47,299)( 48,298)( 49,297)( 50,296)
( 51,295)( 52,294)( 53,293)( 54,292)( 55,291)( 56,290)( 57,289)( 58,288)
( 59,287)( 60,286)( 61,285)( 62,284)( 63,283)( 64,282)( 65,281)( 66,280)
( 67,279)( 68,278)( 69,277)( 70,276)( 71,275)( 72,274)( 73,273)( 74,272)
( 75,271)( 76,270)( 77,269)( 78,268)( 79,267)( 80,266)( 81,265)( 82,264)
( 83,263)( 84,262)( 85,261)( 86,260)( 87,259)( 88,258)( 89,257)( 90,256)
( 91,255)( 92,254)( 93,253)( 94,252)( 95,251)( 96,250)( 97,249)( 98,248)
( 99,247)(100,246)(101,245)(102,244)(103,243)(104,242)(105,241)(106,240)
(107,239)(108,238)(109,237)(110,236)(111,235)(112,234)(113,233)(114,232)
(115,231)(116,343)(117,342)(118,454)(119,453)(120,452)(121,451)(122,450)
(123,449)(124,448)(125,447)(126,446)(127,445)(128,444)(129,443)(130,442)
(131,441)(132,440)(133,439)(134,438)(135,437)(136,436)(137,435)(138,434)
(139,433)(140,432)(141,431)(142,430)(143,429)(144,428)(145,427)(146,426)
(147,425)(148,424)(149,423)(150,422)(151,421)(152,420)(153,419)(154,418)
(155,417)(156,416)(157,415)(158,414)(159,413)(160,412)(161,411)(162,410)
(163,409)(164,408)(165,407)(166,406)(167,405)(168,404)(169,403)(170,402)
(171,401)(172,400)(173,399)(174,398)(175,397)(176,396)(177,395)(178,394)
(179,393)(180,392)(181,391)(182,390)(183,389)(184,388)(185,387)(186,386)
(187,385)(188,384)(189,383)(190,382)(191,381)(192,380)(193,379)(194,378)
(195,377)(196,376)(197,375)(198,374)(199,373)(200,372)(201,371)(202,370)
(203,369)(204,368)(205,367)(206,366)(207,365)(208,364)(209,363)(210,362)
(211,361)(212,360)(213,359)(214,358)(215,357)(216,356)(217,355)(218,354)
(219,353)(220,352)(221,351)(222,350)(223,349)(224,348)(225,347)(226,346)
(227,345)(228,344);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(454)!(1,2);
s1 := Sym(454)!(  4,115)(  5,114)(  6,113)(  7,112)(  8,111)(  9,110)( 10,109)
( 11,108)( 12,107)( 13,106)( 14,105)( 15,104)( 16,103)( 17,102)( 18,101)
( 19,100)( 20, 99)( 21, 98)( 22, 97)( 23, 96)( 24, 95)( 25, 94)( 26, 93)
( 27, 92)( 28, 91)( 29, 90)( 30, 89)( 31, 88)( 32, 87)( 33, 86)( 34, 85)
( 35, 84)( 36, 83)( 37, 82)( 38, 81)( 39, 80)( 40, 79)( 41, 78)( 42, 77)
( 43, 76)( 44, 75)( 45, 74)( 46, 73)( 47, 72)( 48, 71)( 49, 70)( 50, 69)
( 51, 68)( 52, 67)( 53, 66)( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)
( 59, 60)(117,228)(118,227)(119,226)(120,225)(121,224)(122,223)(123,222)
(124,221)(125,220)(126,219)(127,218)(128,217)(129,216)(130,215)(131,214)
(132,213)(133,212)(134,211)(135,210)(136,209)(137,208)(138,207)(139,206)
(140,205)(141,204)(142,203)(143,202)(144,201)(145,200)(146,199)(147,198)
(148,197)(149,196)(150,195)(151,194)(152,193)(153,192)(154,191)(155,190)
(156,189)(157,188)(158,187)(159,186)(160,185)(161,184)(162,183)(163,182)
(164,181)(165,180)(166,179)(167,178)(168,177)(169,176)(170,175)(171,174)
(172,173)(229,342)(230,454)(231,453)(232,452)(233,451)(234,450)(235,449)
(236,448)(237,447)(238,446)(239,445)(240,444)(241,443)(242,442)(243,441)
(244,440)(245,439)(246,438)(247,437)(248,436)(249,435)(250,434)(251,433)
(252,432)(253,431)(254,430)(255,429)(256,428)(257,427)(258,426)(259,425)
(260,424)(261,423)(262,422)(263,421)(264,420)(265,419)(266,418)(267,417)
(268,416)(269,415)(270,414)(271,413)(272,412)(273,411)(274,410)(275,409)
(276,408)(277,407)(278,406)(279,405)(280,404)(281,403)(282,402)(283,401)
(284,400)(285,399)(286,398)(287,397)(288,396)(289,395)(290,394)(291,393)
(292,392)(293,391)(294,390)(295,389)(296,388)(297,387)(298,386)(299,385)
(300,384)(301,383)(302,382)(303,381)(304,380)(305,379)(306,378)(307,377)
(308,376)(309,375)(310,374)(311,373)(312,372)(313,371)(314,370)(315,369)
(316,368)(317,367)(318,366)(319,365)(320,364)(321,363)(322,362)(323,361)
(324,360)(325,359)(326,358)(327,357)(328,356)(329,355)(330,354)(331,353)
(332,352)(333,351)(334,350)(335,349)(336,348)(337,347)(338,346)(339,345)
(340,344)(341,343);
s2 := Sym(454)!(  3,230)(  4,229)(  5,341)(  6,340)(  7,339)(  8,338)(  9,337)
( 10,336)( 11,335)( 12,334)( 13,333)( 14,332)( 15,331)( 16,330)( 17,329)
( 18,328)( 19,327)( 20,326)( 21,325)( 22,324)( 23,323)( 24,322)( 25,321)
( 26,320)( 27,319)( 28,318)( 29,317)( 30,316)( 31,315)( 32,314)( 33,313)
( 34,312)( 35,311)( 36,310)( 37,309)( 38,308)( 39,307)( 40,306)( 41,305)
( 42,304)( 43,303)( 44,302)( 45,301)( 46,300)( 47,299)( 48,298)( 49,297)
( 50,296)( 51,295)( 52,294)( 53,293)( 54,292)( 55,291)( 56,290)( 57,289)
( 58,288)( 59,287)( 60,286)( 61,285)( 62,284)( 63,283)( 64,282)( 65,281)
( 66,280)( 67,279)( 68,278)( 69,277)( 70,276)( 71,275)( 72,274)( 73,273)
( 74,272)( 75,271)( 76,270)( 77,269)( 78,268)( 79,267)( 80,266)( 81,265)
( 82,264)( 83,263)( 84,262)( 85,261)( 86,260)( 87,259)( 88,258)( 89,257)
( 90,256)( 91,255)( 92,254)( 93,253)( 94,252)( 95,251)( 96,250)( 97,249)
( 98,248)( 99,247)(100,246)(101,245)(102,244)(103,243)(104,242)(105,241)
(106,240)(107,239)(108,238)(109,237)(110,236)(111,235)(112,234)(113,233)
(114,232)(115,231)(116,343)(117,342)(118,454)(119,453)(120,452)(121,451)
(122,450)(123,449)(124,448)(125,447)(126,446)(127,445)(128,444)(129,443)
(130,442)(131,441)(132,440)(133,439)(134,438)(135,437)(136,436)(137,435)
(138,434)(139,433)(140,432)(141,431)(142,430)(143,429)(144,428)(145,427)
(146,426)(147,425)(148,424)(149,423)(150,422)(151,421)(152,420)(153,419)
(154,418)(155,417)(156,416)(157,415)(158,414)(159,413)(160,412)(161,411)
(162,410)(163,409)(164,408)(165,407)(166,406)(167,405)(168,404)(169,403)
(170,402)(171,401)(172,400)(173,399)(174,398)(175,397)(176,396)(177,395)
(178,394)(179,393)(180,392)(181,391)(182,390)(183,389)(184,388)(185,387)
(186,386)(187,385)(188,384)(189,383)(190,382)(191,381)(192,380)(193,379)
(194,378)(195,377)(196,376)(197,375)(198,374)(199,373)(200,372)(201,371)
(202,370)(203,369)(204,368)(205,367)(206,366)(207,365)(208,364)(209,363)
(210,362)(211,361)(212,360)(213,359)(214,358)(215,357)(216,356)(217,355)
(218,354)(219,353)(220,352)(221,351)(222,350)(223,349)(224,348)(225,347)
(226,346)(227,345)(228,344);
poly := sub<Sym(454)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope