include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {452}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {452}*904
Also Known As : 452-gon, {452}. if this polytope has another name.
Group : SmallGroup(904,6)
Rank : 2
Schlafli Type : {452}
Number of vertices, edges, etc : 452, 452
Order of s0s1 : 452
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{452,2} of size 1808
Vertex Figure Of :
{2,452} of size 1808
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {226}*452
4-fold quotients : {113}*226
113-fold quotients : {4}*8
226-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {904}*1808
Permutation Representation (GAP) :
s0 := ( 2,113)( 3,112)( 4,111)( 5,110)( 6,109)( 7,108)( 8,107)( 9,106)
( 10,105)( 11,104)( 12,103)( 13,102)( 14,101)( 15,100)( 16, 99)( 17, 98)
( 18, 97)( 19, 96)( 20, 95)( 21, 94)( 22, 93)( 23, 92)( 24, 91)( 25, 90)
( 26, 89)( 27, 88)( 28, 87)( 29, 86)( 30, 85)( 31, 84)( 32, 83)( 33, 82)
( 34, 81)( 35, 80)( 36, 79)( 37, 78)( 38, 77)( 39, 76)( 40, 75)( 41, 74)
( 42, 73)( 43, 72)( 44, 71)( 45, 70)( 46, 69)( 47, 68)( 48, 67)( 49, 66)
( 50, 65)( 51, 64)( 52, 63)( 53, 62)( 54, 61)( 55, 60)( 56, 59)( 57, 58)
(115,226)(116,225)(117,224)(118,223)(119,222)(120,221)(121,220)(122,219)
(123,218)(124,217)(125,216)(126,215)(127,214)(128,213)(129,212)(130,211)
(131,210)(132,209)(133,208)(134,207)(135,206)(136,205)(137,204)(138,203)
(139,202)(140,201)(141,200)(142,199)(143,198)(144,197)(145,196)(146,195)
(147,194)(148,193)(149,192)(150,191)(151,190)(152,189)(153,188)(154,187)
(155,186)(156,185)(157,184)(158,183)(159,182)(160,181)(161,180)(162,179)
(163,178)(164,177)(165,176)(166,175)(167,174)(168,173)(169,172)(170,171)
(227,340)(228,452)(229,451)(230,450)(231,449)(232,448)(233,447)(234,446)
(235,445)(236,444)(237,443)(238,442)(239,441)(240,440)(241,439)(242,438)
(243,437)(244,436)(245,435)(246,434)(247,433)(248,432)(249,431)(250,430)
(251,429)(252,428)(253,427)(254,426)(255,425)(256,424)(257,423)(258,422)
(259,421)(260,420)(261,419)(262,418)(263,417)(264,416)(265,415)(266,414)
(267,413)(268,412)(269,411)(270,410)(271,409)(272,408)(273,407)(274,406)
(275,405)(276,404)(277,403)(278,402)(279,401)(280,400)(281,399)(282,398)
(283,397)(284,396)(285,395)(286,394)(287,393)(288,392)(289,391)(290,390)
(291,389)(292,388)(293,387)(294,386)(295,385)(296,384)(297,383)(298,382)
(299,381)(300,380)(301,379)(302,378)(303,377)(304,376)(305,375)(306,374)
(307,373)(308,372)(309,371)(310,370)(311,369)(312,368)(313,367)(314,366)
(315,365)(316,364)(317,363)(318,362)(319,361)(320,360)(321,359)(322,358)
(323,357)(324,356)(325,355)(326,354)(327,353)(328,352)(329,351)(330,350)
(331,349)(332,348)(333,347)(334,346)(335,345)(336,344)(337,343)(338,342)
(339,341);;
s1 := ( 1,228)( 2,227)( 3,339)( 4,338)( 5,337)( 6,336)( 7,335)( 8,334)
( 9,333)( 10,332)( 11,331)( 12,330)( 13,329)( 14,328)( 15,327)( 16,326)
( 17,325)( 18,324)( 19,323)( 20,322)( 21,321)( 22,320)( 23,319)( 24,318)
( 25,317)( 26,316)( 27,315)( 28,314)( 29,313)( 30,312)( 31,311)( 32,310)
( 33,309)( 34,308)( 35,307)( 36,306)( 37,305)( 38,304)( 39,303)( 40,302)
( 41,301)( 42,300)( 43,299)( 44,298)( 45,297)( 46,296)( 47,295)( 48,294)
( 49,293)( 50,292)( 51,291)( 52,290)( 53,289)( 54,288)( 55,287)( 56,286)
( 57,285)( 58,284)( 59,283)( 60,282)( 61,281)( 62,280)( 63,279)( 64,278)
( 65,277)( 66,276)( 67,275)( 68,274)( 69,273)( 70,272)( 71,271)( 72,270)
( 73,269)( 74,268)( 75,267)( 76,266)( 77,265)( 78,264)( 79,263)( 80,262)
( 81,261)( 82,260)( 83,259)( 84,258)( 85,257)( 86,256)( 87,255)( 88,254)
( 89,253)( 90,252)( 91,251)( 92,250)( 93,249)( 94,248)( 95,247)( 96,246)
( 97,245)( 98,244)( 99,243)(100,242)(101,241)(102,240)(103,239)(104,238)
(105,237)(106,236)(107,235)(108,234)(109,233)(110,232)(111,231)(112,230)
(113,229)(114,341)(115,340)(116,452)(117,451)(118,450)(119,449)(120,448)
(121,447)(122,446)(123,445)(124,444)(125,443)(126,442)(127,441)(128,440)
(129,439)(130,438)(131,437)(132,436)(133,435)(134,434)(135,433)(136,432)
(137,431)(138,430)(139,429)(140,428)(141,427)(142,426)(143,425)(144,424)
(145,423)(146,422)(147,421)(148,420)(149,419)(150,418)(151,417)(152,416)
(153,415)(154,414)(155,413)(156,412)(157,411)(158,410)(159,409)(160,408)
(161,407)(162,406)(163,405)(164,404)(165,403)(166,402)(167,401)(168,400)
(169,399)(170,398)(171,397)(172,396)(173,395)(174,394)(175,393)(176,392)
(177,391)(178,390)(179,389)(180,388)(181,387)(182,386)(183,385)(184,384)
(185,383)(186,382)(187,381)(188,380)(189,379)(190,378)(191,377)(192,376)
(193,375)(194,374)(195,373)(196,372)(197,371)(198,370)(199,369)(200,368)
(201,367)(202,366)(203,365)(204,364)(205,363)(206,362)(207,361)(208,360)
(209,359)(210,358)(211,357)(212,356)(213,355)(214,354)(215,353)(216,352)
(217,351)(218,350)(219,349)(220,348)(221,347)(222,346)(223,345)(224,344)
(225,343)(226,342);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(452)!( 2,113)( 3,112)( 4,111)( 5,110)( 6,109)( 7,108)( 8,107)
( 9,106)( 10,105)( 11,104)( 12,103)( 13,102)( 14,101)( 15,100)( 16, 99)
( 17, 98)( 18, 97)( 19, 96)( 20, 95)( 21, 94)( 22, 93)( 23, 92)( 24, 91)
( 25, 90)( 26, 89)( 27, 88)( 28, 87)( 29, 86)( 30, 85)( 31, 84)( 32, 83)
( 33, 82)( 34, 81)( 35, 80)( 36, 79)( 37, 78)( 38, 77)( 39, 76)( 40, 75)
( 41, 74)( 42, 73)( 43, 72)( 44, 71)( 45, 70)( 46, 69)( 47, 68)( 48, 67)
( 49, 66)( 50, 65)( 51, 64)( 52, 63)( 53, 62)( 54, 61)( 55, 60)( 56, 59)
( 57, 58)(115,226)(116,225)(117,224)(118,223)(119,222)(120,221)(121,220)
(122,219)(123,218)(124,217)(125,216)(126,215)(127,214)(128,213)(129,212)
(130,211)(131,210)(132,209)(133,208)(134,207)(135,206)(136,205)(137,204)
(138,203)(139,202)(140,201)(141,200)(142,199)(143,198)(144,197)(145,196)
(146,195)(147,194)(148,193)(149,192)(150,191)(151,190)(152,189)(153,188)
(154,187)(155,186)(156,185)(157,184)(158,183)(159,182)(160,181)(161,180)
(162,179)(163,178)(164,177)(165,176)(166,175)(167,174)(168,173)(169,172)
(170,171)(227,340)(228,452)(229,451)(230,450)(231,449)(232,448)(233,447)
(234,446)(235,445)(236,444)(237,443)(238,442)(239,441)(240,440)(241,439)
(242,438)(243,437)(244,436)(245,435)(246,434)(247,433)(248,432)(249,431)
(250,430)(251,429)(252,428)(253,427)(254,426)(255,425)(256,424)(257,423)
(258,422)(259,421)(260,420)(261,419)(262,418)(263,417)(264,416)(265,415)
(266,414)(267,413)(268,412)(269,411)(270,410)(271,409)(272,408)(273,407)
(274,406)(275,405)(276,404)(277,403)(278,402)(279,401)(280,400)(281,399)
(282,398)(283,397)(284,396)(285,395)(286,394)(287,393)(288,392)(289,391)
(290,390)(291,389)(292,388)(293,387)(294,386)(295,385)(296,384)(297,383)
(298,382)(299,381)(300,380)(301,379)(302,378)(303,377)(304,376)(305,375)
(306,374)(307,373)(308,372)(309,371)(310,370)(311,369)(312,368)(313,367)
(314,366)(315,365)(316,364)(317,363)(318,362)(319,361)(320,360)(321,359)
(322,358)(323,357)(324,356)(325,355)(326,354)(327,353)(328,352)(329,351)
(330,350)(331,349)(332,348)(333,347)(334,346)(335,345)(336,344)(337,343)
(338,342)(339,341);
s1 := Sym(452)!( 1,228)( 2,227)( 3,339)( 4,338)( 5,337)( 6,336)( 7,335)
( 8,334)( 9,333)( 10,332)( 11,331)( 12,330)( 13,329)( 14,328)( 15,327)
( 16,326)( 17,325)( 18,324)( 19,323)( 20,322)( 21,321)( 22,320)( 23,319)
( 24,318)( 25,317)( 26,316)( 27,315)( 28,314)( 29,313)( 30,312)( 31,311)
( 32,310)( 33,309)( 34,308)( 35,307)( 36,306)( 37,305)( 38,304)( 39,303)
( 40,302)( 41,301)( 42,300)( 43,299)( 44,298)( 45,297)( 46,296)( 47,295)
( 48,294)( 49,293)( 50,292)( 51,291)( 52,290)( 53,289)( 54,288)( 55,287)
( 56,286)( 57,285)( 58,284)( 59,283)( 60,282)( 61,281)( 62,280)( 63,279)
( 64,278)( 65,277)( 66,276)( 67,275)( 68,274)( 69,273)( 70,272)( 71,271)
( 72,270)( 73,269)( 74,268)( 75,267)( 76,266)( 77,265)( 78,264)( 79,263)
( 80,262)( 81,261)( 82,260)( 83,259)( 84,258)( 85,257)( 86,256)( 87,255)
( 88,254)( 89,253)( 90,252)( 91,251)( 92,250)( 93,249)( 94,248)( 95,247)
( 96,246)( 97,245)( 98,244)( 99,243)(100,242)(101,241)(102,240)(103,239)
(104,238)(105,237)(106,236)(107,235)(108,234)(109,233)(110,232)(111,231)
(112,230)(113,229)(114,341)(115,340)(116,452)(117,451)(118,450)(119,449)
(120,448)(121,447)(122,446)(123,445)(124,444)(125,443)(126,442)(127,441)
(128,440)(129,439)(130,438)(131,437)(132,436)(133,435)(134,434)(135,433)
(136,432)(137,431)(138,430)(139,429)(140,428)(141,427)(142,426)(143,425)
(144,424)(145,423)(146,422)(147,421)(148,420)(149,419)(150,418)(151,417)
(152,416)(153,415)(154,414)(155,413)(156,412)(157,411)(158,410)(159,409)
(160,408)(161,407)(162,406)(163,405)(164,404)(165,403)(166,402)(167,401)
(168,400)(169,399)(170,398)(171,397)(172,396)(173,395)(174,394)(175,393)
(176,392)(177,391)(178,390)(179,389)(180,388)(181,387)(182,386)(183,385)
(184,384)(185,383)(186,382)(187,381)(188,380)(189,379)(190,378)(191,377)
(192,376)(193,375)(194,374)(195,373)(196,372)(197,371)(198,370)(199,369)
(200,368)(201,367)(202,366)(203,365)(204,364)(205,363)(206,362)(207,361)
(208,360)(209,359)(210,358)(211,357)(212,356)(213,355)(214,354)(215,353)
(216,352)(217,351)(218,350)(219,349)(220,348)(221,347)(222,346)(223,345)
(224,344)(225,343)(226,342);
poly := sub<Sym(452)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope