Polytope of Type {2,464}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,464}*1856
if this polytope has a name.
Group : SmallGroup(1856,970)
Rank : 3
Schlafli Type : {2,464}
Number of vertices, edges, etc : 2, 464, 464
Order of s0s1s2 : 464
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,232}*928
   4-fold quotients : {2,116}*464
   8-fold quotients : {2,58}*232
   16-fold quotients : {2,29}*116
   29-fold quotients : {2,16}*64
   58-fold quotients : {2,8}*32
   116-fold quotients : {2,4}*16
   232-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 31)(  5, 30)(  6, 29)(  7, 28)(  8, 27)(  9, 26)( 10, 25)( 11, 24)
( 12, 23)( 13, 22)( 14, 21)( 15, 20)( 16, 19)( 17, 18)( 33, 60)( 34, 59)
( 35, 58)( 36, 57)( 37, 56)( 38, 55)( 39, 54)( 40, 53)( 41, 52)( 42, 51)
( 43, 50)( 44, 49)( 45, 48)( 46, 47)( 61, 90)( 62,118)( 63,117)( 64,116)
( 65,115)( 66,114)( 67,113)( 68,112)( 69,111)( 70,110)( 71,109)( 72,108)
( 73,107)( 74,106)( 75,105)( 76,104)( 77,103)( 78,102)( 79,101)( 80,100)
( 81, 99)( 82, 98)( 83, 97)( 84, 96)( 85, 95)( 86, 94)( 87, 93)( 88, 92)
( 89, 91)(119,177)(120,205)(121,204)(122,203)(123,202)(124,201)(125,200)
(126,199)(127,198)(128,197)(129,196)(130,195)(131,194)(132,193)(133,192)
(134,191)(135,190)(136,189)(137,188)(138,187)(139,186)(140,185)(141,184)
(142,183)(143,182)(144,181)(145,180)(146,179)(147,178)(148,206)(149,234)
(150,233)(151,232)(152,231)(153,230)(154,229)(155,228)(156,227)(157,226)
(158,225)(159,224)(160,223)(161,222)(162,221)(163,220)(164,219)(165,218)
(166,217)(167,216)(168,215)(169,214)(170,213)(171,212)(172,211)(173,210)
(174,209)(175,208)(176,207)(235,351)(236,379)(237,378)(238,377)(239,376)
(240,375)(241,374)(242,373)(243,372)(244,371)(245,370)(246,369)(247,368)
(248,367)(249,366)(250,365)(251,364)(252,363)(253,362)(254,361)(255,360)
(256,359)(257,358)(258,357)(259,356)(260,355)(261,354)(262,353)(263,352)
(264,380)(265,408)(266,407)(267,406)(268,405)(269,404)(270,403)(271,402)
(272,401)(273,400)(274,399)(275,398)(276,397)(277,396)(278,395)(279,394)
(280,393)(281,392)(282,391)(283,390)(284,389)(285,388)(286,387)(287,386)
(288,385)(289,384)(290,383)(291,382)(292,381)(293,438)(294,466)(295,465)
(296,464)(297,463)(298,462)(299,461)(300,460)(301,459)(302,458)(303,457)
(304,456)(305,455)(306,454)(307,453)(308,452)(309,451)(310,450)(311,449)
(312,448)(313,447)(314,446)(315,445)(316,444)(317,443)(318,442)(319,441)
(320,440)(321,439)(322,409)(323,437)(324,436)(325,435)(326,434)(327,433)
(328,432)(329,431)(330,430)(331,429)(332,428)(333,427)(334,426)(335,425)
(336,424)(337,423)(338,422)(339,421)(340,420)(341,419)(342,418)(343,417)
(344,416)(345,415)(346,414)(347,413)(348,412)(349,411)(350,410);;
s2 := (  3,236)(  4,235)(  5,263)(  6,262)(  7,261)(  8,260)(  9,259)( 10,258)
( 11,257)( 12,256)( 13,255)( 14,254)( 15,253)( 16,252)( 17,251)( 18,250)
( 19,249)( 20,248)( 21,247)( 22,246)( 23,245)( 24,244)( 25,243)( 26,242)
( 27,241)( 28,240)( 29,239)( 30,238)( 31,237)( 32,265)( 33,264)( 34,292)
( 35,291)( 36,290)( 37,289)( 38,288)( 39,287)( 40,286)( 41,285)( 42,284)
( 43,283)( 44,282)( 45,281)( 46,280)( 47,279)( 48,278)( 49,277)( 50,276)
( 51,275)( 52,274)( 53,273)( 54,272)( 55,271)( 56,270)( 57,269)( 58,268)
( 59,267)( 60,266)( 61,323)( 62,322)( 63,350)( 64,349)( 65,348)( 66,347)
( 67,346)( 68,345)( 69,344)( 70,343)( 71,342)( 72,341)( 73,340)( 74,339)
( 75,338)( 76,337)( 77,336)( 78,335)( 79,334)( 80,333)( 81,332)( 82,331)
( 83,330)( 84,329)( 85,328)( 86,327)( 87,326)( 88,325)( 89,324)( 90,294)
( 91,293)( 92,321)( 93,320)( 94,319)( 95,318)( 96,317)( 97,316)( 98,315)
( 99,314)(100,313)(101,312)(102,311)(103,310)(104,309)(105,308)(106,307)
(107,306)(108,305)(109,304)(110,303)(111,302)(112,301)(113,300)(114,299)
(115,298)(116,297)(117,296)(118,295)(119,410)(120,409)(121,437)(122,436)
(123,435)(124,434)(125,433)(126,432)(127,431)(128,430)(129,429)(130,428)
(131,427)(132,426)(133,425)(134,424)(135,423)(136,422)(137,421)(138,420)
(139,419)(140,418)(141,417)(142,416)(143,415)(144,414)(145,413)(146,412)
(147,411)(148,439)(149,438)(150,466)(151,465)(152,464)(153,463)(154,462)
(155,461)(156,460)(157,459)(158,458)(159,457)(160,456)(161,455)(162,454)
(163,453)(164,452)(165,451)(166,450)(167,449)(168,448)(169,447)(170,446)
(171,445)(172,444)(173,443)(174,442)(175,441)(176,440)(177,352)(178,351)
(179,379)(180,378)(181,377)(182,376)(183,375)(184,374)(185,373)(186,372)
(187,371)(188,370)(189,369)(190,368)(191,367)(192,366)(193,365)(194,364)
(195,363)(196,362)(197,361)(198,360)(199,359)(200,358)(201,357)(202,356)
(203,355)(204,354)(205,353)(206,381)(207,380)(208,408)(209,407)(210,406)
(211,405)(212,404)(213,403)(214,402)(215,401)(216,400)(217,399)(218,398)
(219,397)(220,396)(221,395)(222,394)(223,393)(224,392)(225,391)(226,390)
(227,389)(228,388)(229,387)(230,386)(231,385)(232,384)(233,383)(234,382);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(466)!(1,2);
s1 := Sym(466)!(  4, 31)(  5, 30)(  6, 29)(  7, 28)(  8, 27)(  9, 26)( 10, 25)
( 11, 24)( 12, 23)( 13, 22)( 14, 21)( 15, 20)( 16, 19)( 17, 18)( 33, 60)
( 34, 59)( 35, 58)( 36, 57)( 37, 56)( 38, 55)( 39, 54)( 40, 53)( 41, 52)
( 42, 51)( 43, 50)( 44, 49)( 45, 48)( 46, 47)( 61, 90)( 62,118)( 63,117)
( 64,116)( 65,115)( 66,114)( 67,113)( 68,112)( 69,111)( 70,110)( 71,109)
( 72,108)( 73,107)( 74,106)( 75,105)( 76,104)( 77,103)( 78,102)( 79,101)
( 80,100)( 81, 99)( 82, 98)( 83, 97)( 84, 96)( 85, 95)( 86, 94)( 87, 93)
( 88, 92)( 89, 91)(119,177)(120,205)(121,204)(122,203)(123,202)(124,201)
(125,200)(126,199)(127,198)(128,197)(129,196)(130,195)(131,194)(132,193)
(133,192)(134,191)(135,190)(136,189)(137,188)(138,187)(139,186)(140,185)
(141,184)(142,183)(143,182)(144,181)(145,180)(146,179)(147,178)(148,206)
(149,234)(150,233)(151,232)(152,231)(153,230)(154,229)(155,228)(156,227)
(157,226)(158,225)(159,224)(160,223)(161,222)(162,221)(163,220)(164,219)
(165,218)(166,217)(167,216)(168,215)(169,214)(170,213)(171,212)(172,211)
(173,210)(174,209)(175,208)(176,207)(235,351)(236,379)(237,378)(238,377)
(239,376)(240,375)(241,374)(242,373)(243,372)(244,371)(245,370)(246,369)
(247,368)(248,367)(249,366)(250,365)(251,364)(252,363)(253,362)(254,361)
(255,360)(256,359)(257,358)(258,357)(259,356)(260,355)(261,354)(262,353)
(263,352)(264,380)(265,408)(266,407)(267,406)(268,405)(269,404)(270,403)
(271,402)(272,401)(273,400)(274,399)(275,398)(276,397)(277,396)(278,395)
(279,394)(280,393)(281,392)(282,391)(283,390)(284,389)(285,388)(286,387)
(287,386)(288,385)(289,384)(290,383)(291,382)(292,381)(293,438)(294,466)
(295,465)(296,464)(297,463)(298,462)(299,461)(300,460)(301,459)(302,458)
(303,457)(304,456)(305,455)(306,454)(307,453)(308,452)(309,451)(310,450)
(311,449)(312,448)(313,447)(314,446)(315,445)(316,444)(317,443)(318,442)
(319,441)(320,440)(321,439)(322,409)(323,437)(324,436)(325,435)(326,434)
(327,433)(328,432)(329,431)(330,430)(331,429)(332,428)(333,427)(334,426)
(335,425)(336,424)(337,423)(338,422)(339,421)(340,420)(341,419)(342,418)
(343,417)(344,416)(345,415)(346,414)(347,413)(348,412)(349,411)(350,410);
s2 := Sym(466)!(  3,236)(  4,235)(  5,263)(  6,262)(  7,261)(  8,260)(  9,259)
( 10,258)( 11,257)( 12,256)( 13,255)( 14,254)( 15,253)( 16,252)( 17,251)
( 18,250)( 19,249)( 20,248)( 21,247)( 22,246)( 23,245)( 24,244)( 25,243)
( 26,242)( 27,241)( 28,240)( 29,239)( 30,238)( 31,237)( 32,265)( 33,264)
( 34,292)( 35,291)( 36,290)( 37,289)( 38,288)( 39,287)( 40,286)( 41,285)
( 42,284)( 43,283)( 44,282)( 45,281)( 46,280)( 47,279)( 48,278)( 49,277)
( 50,276)( 51,275)( 52,274)( 53,273)( 54,272)( 55,271)( 56,270)( 57,269)
( 58,268)( 59,267)( 60,266)( 61,323)( 62,322)( 63,350)( 64,349)( 65,348)
( 66,347)( 67,346)( 68,345)( 69,344)( 70,343)( 71,342)( 72,341)( 73,340)
( 74,339)( 75,338)( 76,337)( 77,336)( 78,335)( 79,334)( 80,333)( 81,332)
( 82,331)( 83,330)( 84,329)( 85,328)( 86,327)( 87,326)( 88,325)( 89,324)
( 90,294)( 91,293)( 92,321)( 93,320)( 94,319)( 95,318)( 96,317)( 97,316)
( 98,315)( 99,314)(100,313)(101,312)(102,311)(103,310)(104,309)(105,308)
(106,307)(107,306)(108,305)(109,304)(110,303)(111,302)(112,301)(113,300)
(114,299)(115,298)(116,297)(117,296)(118,295)(119,410)(120,409)(121,437)
(122,436)(123,435)(124,434)(125,433)(126,432)(127,431)(128,430)(129,429)
(130,428)(131,427)(132,426)(133,425)(134,424)(135,423)(136,422)(137,421)
(138,420)(139,419)(140,418)(141,417)(142,416)(143,415)(144,414)(145,413)
(146,412)(147,411)(148,439)(149,438)(150,466)(151,465)(152,464)(153,463)
(154,462)(155,461)(156,460)(157,459)(158,458)(159,457)(160,456)(161,455)
(162,454)(163,453)(164,452)(165,451)(166,450)(167,449)(168,448)(169,447)
(170,446)(171,445)(172,444)(173,443)(174,442)(175,441)(176,440)(177,352)
(178,351)(179,379)(180,378)(181,377)(182,376)(183,375)(184,374)(185,373)
(186,372)(187,371)(188,370)(189,369)(190,368)(191,367)(192,366)(193,365)
(194,364)(195,363)(196,362)(197,361)(198,360)(199,359)(200,358)(201,357)
(202,356)(203,355)(204,354)(205,353)(206,381)(207,380)(208,408)(209,407)
(210,406)(211,405)(212,404)(213,403)(214,402)(215,401)(216,400)(217,399)
(218,398)(219,397)(220,396)(221,395)(222,394)(223,393)(224,392)(225,391)
(226,390)(227,389)(228,388)(229,387)(230,386)(231,385)(232,384)(233,383)
(234,382);
poly := sub<Sym(466)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope