include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {464,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {464,2}*1856
if this polytope has a name.
Group : SmallGroup(1856,970)
Rank : 3
Schlafli Type : {464,2}
Number of vertices, edges, etc : 464, 464, 2
Order of s0s1s2 : 464
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {232,2}*928
4-fold quotients : {116,2}*464
8-fold quotients : {58,2}*232
16-fold quotients : {29,2}*116
29-fold quotients : {16,2}*64
58-fold quotients : {8,2}*32
116-fold quotients : {4,2}*16
232-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 29)( 3, 28)( 4, 27)( 5, 26)( 6, 25)( 7, 24)( 8, 23)( 9, 22)
( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 31, 58)( 32, 57)
( 33, 56)( 34, 55)( 35, 54)( 36, 53)( 37, 52)( 38, 51)( 39, 50)( 40, 49)
( 41, 48)( 42, 47)( 43, 46)( 44, 45)( 59, 88)( 60,116)( 61,115)( 62,114)
( 63,113)( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)
( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)
( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)
( 87, 89)(117,175)(118,203)(119,202)(120,201)(121,200)(122,199)(123,198)
(124,197)(125,196)(126,195)(127,194)(128,193)(129,192)(130,191)(131,190)
(132,189)(133,188)(134,187)(135,186)(136,185)(137,184)(138,183)(139,182)
(140,181)(141,180)(142,179)(143,178)(144,177)(145,176)(146,204)(147,232)
(148,231)(149,230)(150,229)(151,228)(152,227)(153,226)(154,225)(155,224)
(156,223)(157,222)(158,221)(159,220)(160,219)(161,218)(162,217)(163,216)
(164,215)(165,214)(166,213)(167,212)(168,211)(169,210)(170,209)(171,208)
(172,207)(173,206)(174,205)(233,349)(234,377)(235,376)(236,375)(237,374)
(238,373)(239,372)(240,371)(241,370)(242,369)(243,368)(244,367)(245,366)
(246,365)(247,364)(248,363)(249,362)(250,361)(251,360)(252,359)(253,358)
(254,357)(255,356)(256,355)(257,354)(258,353)(259,352)(260,351)(261,350)
(262,378)(263,406)(264,405)(265,404)(266,403)(267,402)(268,401)(269,400)
(270,399)(271,398)(272,397)(273,396)(274,395)(275,394)(276,393)(277,392)
(278,391)(279,390)(280,389)(281,388)(282,387)(283,386)(284,385)(285,384)
(286,383)(287,382)(288,381)(289,380)(290,379)(291,436)(292,464)(293,463)
(294,462)(295,461)(296,460)(297,459)(298,458)(299,457)(300,456)(301,455)
(302,454)(303,453)(304,452)(305,451)(306,450)(307,449)(308,448)(309,447)
(310,446)(311,445)(312,444)(313,443)(314,442)(315,441)(316,440)(317,439)
(318,438)(319,437)(320,407)(321,435)(322,434)(323,433)(324,432)(325,431)
(326,430)(327,429)(328,428)(329,427)(330,426)(331,425)(332,424)(333,423)
(334,422)(335,421)(336,420)(337,419)(338,418)(339,417)(340,416)(341,415)
(342,414)(343,413)(344,412)(345,411)(346,410)(347,409)(348,408);;
s1 := ( 1,234)( 2,233)( 3,261)( 4,260)( 5,259)( 6,258)( 7,257)( 8,256)
( 9,255)( 10,254)( 11,253)( 12,252)( 13,251)( 14,250)( 15,249)( 16,248)
( 17,247)( 18,246)( 19,245)( 20,244)( 21,243)( 22,242)( 23,241)( 24,240)
( 25,239)( 26,238)( 27,237)( 28,236)( 29,235)( 30,263)( 31,262)( 32,290)
( 33,289)( 34,288)( 35,287)( 36,286)( 37,285)( 38,284)( 39,283)( 40,282)
( 41,281)( 42,280)( 43,279)( 44,278)( 45,277)( 46,276)( 47,275)( 48,274)
( 49,273)( 50,272)( 51,271)( 52,270)( 53,269)( 54,268)( 55,267)( 56,266)
( 57,265)( 58,264)( 59,321)( 60,320)( 61,348)( 62,347)( 63,346)( 64,345)
( 65,344)( 66,343)( 67,342)( 68,341)( 69,340)( 70,339)( 71,338)( 72,337)
( 73,336)( 74,335)( 75,334)( 76,333)( 77,332)( 78,331)( 79,330)( 80,329)
( 81,328)( 82,327)( 83,326)( 84,325)( 85,324)( 86,323)( 87,322)( 88,292)
( 89,291)( 90,319)( 91,318)( 92,317)( 93,316)( 94,315)( 95,314)( 96,313)
( 97,312)( 98,311)( 99,310)(100,309)(101,308)(102,307)(103,306)(104,305)
(105,304)(106,303)(107,302)(108,301)(109,300)(110,299)(111,298)(112,297)
(113,296)(114,295)(115,294)(116,293)(117,408)(118,407)(119,435)(120,434)
(121,433)(122,432)(123,431)(124,430)(125,429)(126,428)(127,427)(128,426)
(129,425)(130,424)(131,423)(132,422)(133,421)(134,420)(135,419)(136,418)
(137,417)(138,416)(139,415)(140,414)(141,413)(142,412)(143,411)(144,410)
(145,409)(146,437)(147,436)(148,464)(149,463)(150,462)(151,461)(152,460)
(153,459)(154,458)(155,457)(156,456)(157,455)(158,454)(159,453)(160,452)
(161,451)(162,450)(163,449)(164,448)(165,447)(166,446)(167,445)(168,444)
(169,443)(170,442)(171,441)(172,440)(173,439)(174,438)(175,350)(176,349)
(177,377)(178,376)(179,375)(180,374)(181,373)(182,372)(183,371)(184,370)
(185,369)(186,368)(187,367)(188,366)(189,365)(190,364)(191,363)(192,362)
(193,361)(194,360)(195,359)(196,358)(197,357)(198,356)(199,355)(200,354)
(201,353)(202,352)(203,351)(204,379)(205,378)(206,406)(207,405)(208,404)
(209,403)(210,402)(211,401)(212,400)(213,399)(214,398)(215,397)(216,396)
(217,395)(218,394)(219,393)(220,392)(221,391)(222,390)(223,389)(224,388)
(225,387)(226,386)(227,385)(228,384)(229,383)(230,382)(231,381)(232,380);;
s2 := (465,466);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(466)!( 2, 29)( 3, 28)( 4, 27)( 5, 26)( 6, 25)( 7, 24)( 8, 23)
( 9, 22)( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 31, 58)
( 32, 57)( 33, 56)( 34, 55)( 35, 54)( 36, 53)( 37, 52)( 38, 51)( 39, 50)
( 40, 49)( 41, 48)( 42, 47)( 43, 46)( 44, 45)( 59, 88)( 60,116)( 61,115)
( 62,114)( 63,113)( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)
( 70,106)( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)
( 78, 98)( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)
( 86, 90)( 87, 89)(117,175)(118,203)(119,202)(120,201)(121,200)(122,199)
(123,198)(124,197)(125,196)(126,195)(127,194)(128,193)(129,192)(130,191)
(131,190)(132,189)(133,188)(134,187)(135,186)(136,185)(137,184)(138,183)
(139,182)(140,181)(141,180)(142,179)(143,178)(144,177)(145,176)(146,204)
(147,232)(148,231)(149,230)(150,229)(151,228)(152,227)(153,226)(154,225)
(155,224)(156,223)(157,222)(158,221)(159,220)(160,219)(161,218)(162,217)
(163,216)(164,215)(165,214)(166,213)(167,212)(168,211)(169,210)(170,209)
(171,208)(172,207)(173,206)(174,205)(233,349)(234,377)(235,376)(236,375)
(237,374)(238,373)(239,372)(240,371)(241,370)(242,369)(243,368)(244,367)
(245,366)(246,365)(247,364)(248,363)(249,362)(250,361)(251,360)(252,359)
(253,358)(254,357)(255,356)(256,355)(257,354)(258,353)(259,352)(260,351)
(261,350)(262,378)(263,406)(264,405)(265,404)(266,403)(267,402)(268,401)
(269,400)(270,399)(271,398)(272,397)(273,396)(274,395)(275,394)(276,393)
(277,392)(278,391)(279,390)(280,389)(281,388)(282,387)(283,386)(284,385)
(285,384)(286,383)(287,382)(288,381)(289,380)(290,379)(291,436)(292,464)
(293,463)(294,462)(295,461)(296,460)(297,459)(298,458)(299,457)(300,456)
(301,455)(302,454)(303,453)(304,452)(305,451)(306,450)(307,449)(308,448)
(309,447)(310,446)(311,445)(312,444)(313,443)(314,442)(315,441)(316,440)
(317,439)(318,438)(319,437)(320,407)(321,435)(322,434)(323,433)(324,432)
(325,431)(326,430)(327,429)(328,428)(329,427)(330,426)(331,425)(332,424)
(333,423)(334,422)(335,421)(336,420)(337,419)(338,418)(339,417)(340,416)
(341,415)(342,414)(343,413)(344,412)(345,411)(346,410)(347,409)(348,408);
s1 := Sym(466)!( 1,234)( 2,233)( 3,261)( 4,260)( 5,259)( 6,258)( 7,257)
( 8,256)( 9,255)( 10,254)( 11,253)( 12,252)( 13,251)( 14,250)( 15,249)
( 16,248)( 17,247)( 18,246)( 19,245)( 20,244)( 21,243)( 22,242)( 23,241)
( 24,240)( 25,239)( 26,238)( 27,237)( 28,236)( 29,235)( 30,263)( 31,262)
( 32,290)( 33,289)( 34,288)( 35,287)( 36,286)( 37,285)( 38,284)( 39,283)
( 40,282)( 41,281)( 42,280)( 43,279)( 44,278)( 45,277)( 46,276)( 47,275)
( 48,274)( 49,273)( 50,272)( 51,271)( 52,270)( 53,269)( 54,268)( 55,267)
( 56,266)( 57,265)( 58,264)( 59,321)( 60,320)( 61,348)( 62,347)( 63,346)
( 64,345)( 65,344)( 66,343)( 67,342)( 68,341)( 69,340)( 70,339)( 71,338)
( 72,337)( 73,336)( 74,335)( 75,334)( 76,333)( 77,332)( 78,331)( 79,330)
( 80,329)( 81,328)( 82,327)( 83,326)( 84,325)( 85,324)( 86,323)( 87,322)
( 88,292)( 89,291)( 90,319)( 91,318)( 92,317)( 93,316)( 94,315)( 95,314)
( 96,313)( 97,312)( 98,311)( 99,310)(100,309)(101,308)(102,307)(103,306)
(104,305)(105,304)(106,303)(107,302)(108,301)(109,300)(110,299)(111,298)
(112,297)(113,296)(114,295)(115,294)(116,293)(117,408)(118,407)(119,435)
(120,434)(121,433)(122,432)(123,431)(124,430)(125,429)(126,428)(127,427)
(128,426)(129,425)(130,424)(131,423)(132,422)(133,421)(134,420)(135,419)
(136,418)(137,417)(138,416)(139,415)(140,414)(141,413)(142,412)(143,411)
(144,410)(145,409)(146,437)(147,436)(148,464)(149,463)(150,462)(151,461)
(152,460)(153,459)(154,458)(155,457)(156,456)(157,455)(158,454)(159,453)
(160,452)(161,451)(162,450)(163,449)(164,448)(165,447)(166,446)(167,445)
(168,444)(169,443)(170,442)(171,441)(172,440)(173,439)(174,438)(175,350)
(176,349)(177,377)(178,376)(179,375)(180,374)(181,373)(182,372)(183,371)
(184,370)(185,369)(186,368)(187,367)(188,366)(189,365)(190,364)(191,363)
(192,362)(193,361)(194,360)(195,359)(196,358)(197,357)(198,356)(199,355)
(200,354)(201,353)(202,352)(203,351)(204,379)(205,378)(206,406)(207,405)
(208,404)(209,403)(210,402)(211,401)(212,400)(213,399)(214,398)(215,397)
(216,396)(217,395)(218,394)(219,393)(220,392)(221,391)(222,390)(223,389)
(224,388)(225,387)(226,386)(227,385)(228,384)(229,383)(230,382)(231,381)
(232,380);
s2 := Sym(466)!(465,466);
poly := sub<Sym(466)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope