include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {9,2,52}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,52}*1872
if this polytope has a name.
Group : SmallGroup(1872,189)
Rank : 4
Schlafli Type : {9,2,52}
Number of vertices, edges, etc : 9, 9, 52, 52
Order of s0s1s2s3 : 468
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {9,2,26}*936
3-fold quotients : {3,2,52}*624
4-fold quotients : {9,2,13}*468
6-fold quotients : {3,2,26}*312
12-fold quotients : {3,2,13}*156
13-fold quotients : {9,2,4}*144
26-fold quotients : {9,2,2}*72
39-fold quotients : {3,2,4}*48
78-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(16,19)(17,18)(20,21)(22,23)(24,27)(25,26)(28,29)(30,31)
(32,35)(33,34)(36,37)(38,39)(40,43)(41,42)(44,45)(46,47)(48,51)(49,50)(52,53)
(54,55)(56,59)(57,58)(60,61);;
s3 := (10,16)(11,13)(12,22)(14,24)(15,18)(17,20)(19,30)(21,32)(23,26)(25,28)
(27,38)(29,40)(31,34)(33,36)(35,46)(37,48)(39,42)(41,44)(43,54)(45,56)(47,50)
(49,52)(51,60)(53,57)(55,58)(59,61);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(61)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(61)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(61)!(11,12)(13,14)(16,19)(17,18)(20,21)(22,23)(24,27)(25,26)(28,29)
(30,31)(32,35)(33,34)(36,37)(38,39)(40,43)(41,42)(44,45)(46,47)(48,51)(49,50)
(52,53)(54,55)(56,59)(57,58)(60,61);
s3 := Sym(61)!(10,16)(11,13)(12,22)(14,24)(15,18)(17,20)(19,30)(21,32)(23,26)
(25,28)(27,38)(29,40)(31,34)(33,36)(35,46)(37,48)(39,42)(41,44)(43,54)(45,56)
(47,50)(49,52)(51,60)(53,57)(55,58)(59,61);
poly := sub<Sym(61)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope