Polytope of Type {9,2,13}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {9,2,13}*468
if this polytope has a name.
Group : SmallGroup(468,11)
Rank : 4
Schlafli Type : {9,2,13}
Number of vertices, edges, etc : 9, 9, 13, 13
Order of s0s1s2s3 : 117
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {9,2,13,2} of size 936
Vertex Figure Of :
   {2,9,2,13} of size 936
   {4,9,2,13} of size 1872
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,13}*156
Covers (Minimal Covers in Boldface) :
   2-fold covers : {9,2,26}*936, {18,2,13}*936
   3-fold covers : {27,2,13}*1404, {9,2,39}*1404
   4-fold covers : {36,2,13}*1872, {9,2,52}*1872, {18,2,26}*1872
Permutation Representation (GAP) :
s0 := (2,3)(4,5)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (11,12)(13,14)(15,16)(17,18)(19,20)(21,22);;
s3 := (10,11)(12,13)(14,15)(16,17)(18,19)(20,21);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(22)!(2,3)(4,5)(6,7)(8,9);
s1 := Sym(22)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(22)!(11,12)(13,14)(15,16)(17,18)(19,20)(21,22);
s3 := Sym(22)!(10,11)(12,13)(14,15)(16,17)(18,19)(20,21);
poly := sub<Sym(22)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope