Polytope of Type {2,468}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,468}*1872
if this polytope has a name.
Group : SmallGroup(1872,236)
Rank : 3
Schlafli Type : {2,468}
Number of vertices, edges, etc : 2, 468, 468
Order of s0s1s2 : 468
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,234}*936
   3-fold quotients : {2,156}*624
   4-fold quotients : {2,117}*468
   6-fold quotients : {2,78}*312
   9-fold quotients : {2,52}*208
   12-fold quotients : {2,39}*156
   13-fold quotients : {2,36}*144
   18-fold quotients : {2,26}*104
   26-fold quotients : {2,18}*72
   36-fold quotients : {2,13}*52
   39-fold quotients : {2,12}*48
   52-fold quotients : {2,9}*36
   78-fold quotients : {2,6}*24
   117-fold quotients : {2,4}*16
   156-fold quotients : {2,3}*12
   234-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  6, 39)(  7, 41)(  8, 40)(  9, 36)( 10, 38)( 11, 37)( 12, 33)
( 13, 35)( 14, 34)( 15, 30)( 16, 32)( 17, 31)( 18, 27)( 19, 29)( 20, 28)
( 21, 24)( 22, 26)( 23, 25)( 42, 83)( 43, 82)( 44, 81)( 45,119)( 46,118)
( 47,117)( 48,116)( 49,115)( 50,114)( 51,113)( 52,112)( 53,111)( 54,110)
( 55,109)( 56,108)( 57,107)( 58,106)( 59,105)( 60,104)( 61,103)( 62,102)
( 63,101)( 64,100)( 65, 99)( 66, 98)( 67, 97)( 68, 96)( 69, 95)( 70, 94)
( 71, 93)( 72, 92)( 73, 91)( 74, 90)( 75, 89)( 76, 88)( 77, 87)( 78, 86)
( 79, 85)( 80, 84)(121,122)(123,156)(124,158)(125,157)(126,153)(127,155)
(128,154)(129,150)(130,152)(131,151)(132,147)(133,149)(134,148)(135,144)
(136,146)(137,145)(138,141)(139,143)(140,142)(159,200)(160,199)(161,198)
(162,236)(163,235)(164,234)(165,233)(166,232)(167,231)(168,230)(169,229)
(170,228)(171,227)(172,226)(173,225)(174,224)(175,223)(176,222)(177,221)
(178,220)(179,219)(180,218)(181,217)(182,216)(183,215)(184,214)(185,213)
(186,212)(187,211)(188,210)(189,209)(190,208)(191,207)(192,206)(193,205)
(194,204)(195,203)(196,202)(197,201)(237,354)(238,356)(239,355)(240,390)
(241,392)(242,391)(243,387)(244,389)(245,388)(246,384)(247,386)(248,385)
(249,381)(250,383)(251,382)(252,378)(253,380)(254,379)(255,375)(256,377)
(257,376)(258,372)(259,374)(260,373)(261,369)(262,371)(263,370)(264,366)
(265,368)(266,367)(267,363)(268,365)(269,364)(270,360)(271,362)(272,361)
(273,357)(274,359)(275,358)(276,434)(277,433)(278,432)(279,470)(280,469)
(281,468)(282,467)(283,466)(284,465)(285,464)(286,463)(287,462)(288,461)
(289,460)(290,459)(291,458)(292,457)(293,456)(294,455)(295,454)(296,453)
(297,452)(298,451)(299,450)(300,449)(301,448)(302,447)(303,446)(304,445)
(305,444)(306,443)(307,442)(308,441)(309,440)(310,439)(311,438)(312,437)
(313,436)(314,435)(315,395)(316,394)(317,393)(318,431)(319,430)(320,429)
(321,428)(322,427)(323,426)(324,425)(325,424)(326,423)(327,422)(328,421)
(329,420)(330,419)(331,418)(332,417)(333,416)(334,415)(335,414)(336,413)
(337,412)(338,411)(339,410)(340,409)(341,408)(342,407)(343,406)(344,405)
(345,404)(346,403)(347,402)(348,401)(349,400)(350,399)(351,398)(352,397)
(353,396);;
s2 := (  3,279)(  4,281)(  5,280)(  6,276)(  7,278)(  8,277)(  9,312)( 10,314)
( 11,313)( 12,309)( 13,311)( 14,310)( 15,306)( 16,308)( 17,307)( 18,303)
( 19,305)( 20,304)( 21,300)( 22,302)( 23,301)( 24,297)( 25,299)( 26,298)
( 27,294)( 28,296)( 29,295)( 30,291)( 31,293)( 32,292)( 33,288)( 34,290)
( 35,289)( 36,285)( 37,287)( 38,286)( 39,282)( 40,284)( 41,283)( 42,240)
( 43,242)( 44,241)( 45,237)( 46,239)( 47,238)( 48,273)( 49,275)( 50,274)
( 51,270)( 52,272)( 53,271)( 54,267)( 55,269)( 56,268)( 57,264)( 58,266)
( 59,265)( 60,261)( 61,263)( 62,262)( 63,258)( 64,260)( 65,259)( 66,255)
( 67,257)( 68,256)( 69,252)( 70,254)( 71,253)( 72,249)( 73,251)( 74,250)
( 75,246)( 76,248)( 77,247)( 78,243)( 79,245)( 80,244)( 81,320)( 82,319)
( 83,318)( 84,317)( 85,316)( 86,315)( 87,353)( 88,352)( 89,351)( 90,350)
( 91,349)( 92,348)( 93,347)( 94,346)( 95,345)( 96,344)( 97,343)( 98,342)
( 99,341)(100,340)(101,339)(102,338)(103,337)(104,336)(105,335)(106,334)
(107,333)(108,332)(109,331)(110,330)(111,329)(112,328)(113,327)(114,326)
(115,325)(116,324)(117,323)(118,322)(119,321)(120,396)(121,398)(122,397)
(123,393)(124,395)(125,394)(126,429)(127,431)(128,430)(129,426)(130,428)
(131,427)(132,423)(133,425)(134,424)(135,420)(136,422)(137,421)(138,417)
(139,419)(140,418)(141,414)(142,416)(143,415)(144,411)(145,413)(146,412)
(147,408)(148,410)(149,409)(150,405)(151,407)(152,406)(153,402)(154,404)
(155,403)(156,399)(157,401)(158,400)(159,357)(160,359)(161,358)(162,354)
(163,356)(164,355)(165,390)(166,392)(167,391)(168,387)(169,389)(170,388)
(171,384)(172,386)(173,385)(174,381)(175,383)(176,382)(177,378)(178,380)
(179,379)(180,375)(181,377)(182,376)(183,372)(184,374)(185,373)(186,369)
(187,371)(188,370)(189,366)(190,368)(191,367)(192,363)(193,365)(194,364)
(195,360)(196,362)(197,361)(198,437)(199,436)(200,435)(201,434)(202,433)
(203,432)(204,470)(205,469)(206,468)(207,467)(208,466)(209,465)(210,464)
(211,463)(212,462)(213,461)(214,460)(215,459)(216,458)(217,457)(218,456)
(219,455)(220,454)(221,453)(222,452)(223,451)(224,450)(225,449)(226,448)
(227,447)(228,446)(229,445)(230,444)(231,443)(232,442)(233,441)(234,440)
(235,439)(236,438);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(470)!(1,2);
s1 := Sym(470)!(  4,  5)(  6, 39)(  7, 41)(  8, 40)(  9, 36)( 10, 38)( 11, 37)
( 12, 33)( 13, 35)( 14, 34)( 15, 30)( 16, 32)( 17, 31)( 18, 27)( 19, 29)
( 20, 28)( 21, 24)( 22, 26)( 23, 25)( 42, 83)( 43, 82)( 44, 81)( 45,119)
( 46,118)( 47,117)( 48,116)( 49,115)( 50,114)( 51,113)( 52,112)( 53,111)
( 54,110)( 55,109)( 56,108)( 57,107)( 58,106)( 59,105)( 60,104)( 61,103)
( 62,102)( 63,101)( 64,100)( 65, 99)( 66, 98)( 67, 97)( 68, 96)( 69, 95)
( 70, 94)( 71, 93)( 72, 92)( 73, 91)( 74, 90)( 75, 89)( 76, 88)( 77, 87)
( 78, 86)( 79, 85)( 80, 84)(121,122)(123,156)(124,158)(125,157)(126,153)
(127,155)(128,154)(129,150)(130,152)(131,151)(132,147)(133,149)(134,148)
(135,144)(136,146)(137,145)(138,141)(139,143)(140,142)(159,200)(160,199)
(161,198)(162,236)(163,235)(164,234)(165,233)(166,232)(167,231)(168,230)
(169,229)(170,228)(171,227)(172,226)(173,225)(174,224)(175,223)(176,222)
(177,221)(178,220)(179,219)(180,218)(181,217)(182,216)(183,215)(184,214)
(185,213)(186,212)(187,211)(188,210)(189,209)(190,208)(191,207)(192,206)
(193,205)(194,204)(195,203)(196,202)(197,201)(237,354)(238,356)(239,355)
(240,390)(241,392)(242,391)(243,387)(244,389)(245,388)(246,384)(247,386)
(248,385)(249,381)(250,383)(251,382)(252,378)(253,380)(254,379)(255,375)
(256,377)(257,376)(258,372)(259,374)(260,373)(261,369)(262,371)(263,370)
(264,366)(265,368)(266,367)(267,363)(268,365)(269,364)(270,360)(271,362)
(272,361)(273,357)(274,359)(275,358)(276,434)(277,433)(278,432)(279,470)
(280,469)(281,468)(282,467)(283,466)(284,465)(285,464)(286,463)(287,462)
(288,461)(289,460)(290,459)(291,458)(292,457)(293,456)(294,455)(295,454)
(296,453)(297,452)(298,451)(299,450)(300,449)(301,448)(302,447)(303,446)
(304,445)(305,444)(306,443)(307,442)(308,441)(309,440)(310,439)(311,438)
(312,437)(313,436)(314,435)(315,395)(316,394)(317,393)(318,431)(319,430)
(320,429)(321,428)(322,427)(323,426)(324,425)(325,424)(326,423)(327,422)
(328,421)(329,420)(330,419)(331,418)(332,417)(333,416)(334,415)(335,414)
(336,413)(337,412)(338,411)(339,410)(340,409)(341,408)(342,407)(343,406)
(344,405)(345,404)(346,403)(347,402)(348,401)(349,400)(350,399)(351,398)
(352,397)(353,396);
s2 := Sym(470)!(  3,279)(  4,281)(  5,280)(  6,276)(  7,278)(  8,277)(  9,312)
( 10,314)( 11,313)( 12,309)( 13,311)( 14,310)( 15,306)( 16,308)( 17,307)
( 18,303)( 19,305)( 20,304)( 21,300)( 22,302)( 23,301)( 24,297)( 25,299)
( 26,298)( 27,294)( 28,296)( 29,295)( 30,291)( 31,293)( 32,292)( 33,288)
( 34,290)( 35,289)( 36,285)( 37,287)( 38,286)( 39,282)( 40,284)( 41,283)
( 42,240)( 43,242)( 44,241)( 45,237)( 46,239)( 47,238)( 48,273)( 49,275)
( 50,274)( 51,270)( 52,272)( 53,271)( 54,267)( 55,269)( 56,268)( 57,264)
( 58,266)( 59,265)( 60,261)( 61,263)( 62,262)( 63,258)( 64,260)( 65,259)
( 66,255)( 67,257)( 68,256)( 69,252)( 70,254)( 71,253)( 72,249)( 73,251)
( 74,250)( 75,246)( 76,248)( 77,247)( 78,243)( 79,245)( 80,244)( 81,320)
( 82,319)( 83,318)( 84,317)( 85,316)( 86,315)( 87,353)( 88,352)( 89,351)
( 90,350)( 91,349)( 92,348)( 93,347)( 94,346)( 95,345)( 96,344)( 97,343)
( 98,342)( 99,341)(100,340)(101,339)(102,338)(103,337)(104,336)(105,335)
(106,334)(107,333)(108,332)(109,331)(110,330)(111,329)(112,328)(113,327)
(114,326)(115,325)(116,324)(117,323)(118,322)(119,321)(120,396)(121,398)
(122,397)(123,393)(124,395)(125,394)(126,429)(127,431)(128,430)(129,426)
(130,428)(131,427)(132,423)(133,425)(134,424)(135,420)(136,422)(137,421)
(138,417)(139,419)(140,418)(141,414)(142,416)(143,415)(144,411)(145,413)
(146,412)(147,408)(148,410)(149,409)(150,405)(151,407)(152,406)(153,402)
(154,404)(155,403)(156,399)(157,401)(158,400)(159,357)(160,359)(161,358)
(162,354)(163,356)(164,355)(165,390)(166,392)(167,391)(168,387)(169,389)
(170,388)(171,384)(172,386)(173,385)(174,381)(175,383)(176,382)(177,378)
(178,380)(179,379)(180,375)(181,377)(182,376)(183,372)(184,374)(185,373)
(186,369)(187,371)(188,370)(189,366)(190,368)(191,367)(192,363)(193,365)
(194,364)(195,360)(196,362)(197,361)(198,437)(199,436)(200,435)(201,434)
(202,433)(203,432)(204,470)(205,469)(206,468)(207,467)(208,466)(209,465)
(210,464)(211,463)(212,462)(213,461)(214,460)(215,459)(216,458)(217,457)
(218,456)(219,455)(220,454)(221,453)(222,452)(223,451)(224,450)(225,449)
(226,448)(227,447)(228,446)(229,445)(230,444)(231,443)(232,442)(233,441)
(234,440)(235,439)(236,438);
poly := sub<Sym(470)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope