include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {468,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {468,2}*1872
if this polytope has a name.
Group : SmallGroup(1872,236)
Rank : 3
Schlafli Type : {468,2}
Number of vertices, edges, etc : 468, 468, 2
Order of s0s1s2 : 468
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {234,2}*936
3-fold quotients : {156,2}*624
4-fold quotients : {117,2}*468
6-fold quotients : {78,2}*312
9-fold quotients : {52,2}*208
12-fold quotients : {39,2}*156
13-fold quotients : {36,2}*144
18-fold quotients : {26,2}*104
26-fold quotients : {18,2}*72
36-fold quotients : {13,2}*52
39-fold quotients : {12,2}*48
52-fold quotients : {9,2}*36
78-fold quotients : {6,2}*24
117-fold quotients : {4,2}*16
156-fold quotients : {3,2}*12
234-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 37)( 5, 39)( 6, 38)( 7, 34)( 8, 36)( 9, 35)( 10, 31)
( 11, 33)( 12, 32)( 13, 28)( 14, 30)( 15, 29)( 16, 25)( 17, 27)( 18, 26)
( 19, 22)( 20, 24)( 21, 23)( 40, 81)( 41, 80)( 42, 79)( 43,117)( 44,116)
( 45,115)( 46,114)( 47,113)( 48,112)( 49,111)( 50,110)( 51,109)( 52,108)
( 53,107)( 54,106)( 55,105)( 56,104)( 57,103)( 58,102)( 59,101)( 60,100)
( 61, 99)( 62, 98)( 63, 97)( 64, 96)( 65, 95)( 66, 94)( 67, 93)( 68, 92)
( 69, 91)( 70, 90)( 71, 89)( 72, 88)( 73, 87)( 74, 86)( 75, 85)( 76, 84)
( 77, 83)( 78, 82)(119,120)(121,154)(122,156)(123,155)(124,151)(125,153)
(126,152)(127,148)(128,150)(129,149)(130,145)(131,147)(132,146)(133,142)
(134,144)(135,143)(136,139)(137,141)(138,140)(157,198)(158,197)(159,196)
(160,234)(161,233)(162,232)(163,231)(164,230)(165,229)(166,228)(167,227)
(168,226)(169,225)(170,224)(171,223)(172,222)(173,221)(174,220)(175,219)
(176,218)(177,217)(178,216)(179,215)(180,214)(181,213)(182,212)(183,211)
(184,210)(185,209)(186,208)(187,207)(188,206)(189,205)(190,204)(191,203)
(192,202)(193,201)(194,200)(195,199)(235,352)(236,354)(237,353)(238,388)
(239,390)(240,389)(241,385)(242,387)(243,386)(244,382)(245,384)(246,383)
(247,379)(248,381)(249,380)(250,376)(251,378)(252,377)(253,373)(254,375)
(255,374)(256,370)(257,372)(258,371)(259,367)(260,369)(261,368)(262,364)
(263,366)(264,365)(265,361)(266,363)(267,362)(268,358)(269,360)(270,359)
(271,355)(272,357)(273,356)(274,432)(275,431)(276,430)(277,468)(278,467)
(279,466)(280,465)(281,464)(282,463)(283,462)(284,461)(285,460)(286,459)
(287,458)(288,457)(289,456)(290,455)(291,454)(292,453)(293,452)(294,451)
(295,450)(296,449)(297,448)(298,447)(299,446)(300,445)(301,444)(302,443)
(303,442)(304,441)(305,440)(306,439)(307,438)(308,437)(309,436)(310,435)
(311,434)(312,433)(313,393)(314,392)(315,391)(316,429)(317,428)(318,427)
(319,426)(320,425)(321,424)(322,423)(323,422)(324,421)(325,420)(326,419)
(327,418)(328,417)(329,416)(330,415)(331,414)(332,413)(333,412)(334,411)
(335,410)(336,409)(337,408)(338,407)(339,406)(340,405)(341,404)(342,403)
(343,402)(344,401)(345,400)(346,399)(347,398)(348,397)(349,396)(350,395)
(351,394);;
s1 := ( 1,277)( 2,279)( 3,278)( 4,274)( 5,276)( 6,275)( 7,310)( 8,312)
( 9,311)( 10,307)( 11,309)( 12,308)( 13,304)( 14,306)( 15,305)( 16,301)
( 17,303)( 18,302)( 19,298)( 20,300)( 21,299)( 22,295)( 23,297)( 24,296)
( 25,292)( 26,294)( 27,293)( 28,289)( 29,291)( 30,290)( 31,286)( 32,288)
( 33,287)( 34,283)( 35,285)( 36,284)( 37,280)( 38,282)( 39,281)( 40,238)
( 41,240)( 42,239)( 43,235)( 44,237)( 45,236)( 46,271)( 47,273)( 48,272)
( 49,268)( 50,270)( 51,269)( 52,265)( 53,267)( 54,266)( 55,262)( 56,264)
( 57,263)( 58,259)( 59,261)( 60,260)( 61,256)( 62,258)( 63,257)( 64,253)
( 65,255)( 66,254)( 67,250)( 68,252)( 69,251)( 70,247)( 71,249)( 72,248)
( 73,244)( 74,246)( 75,245)( 76,241)( 77,243)( 78,242)( 79,318)( 80,317)
( 81,316)( 82,315)( 83,314)( 84,313)( 85,351)( 86,350)( 87,349)( 88,348)
( 89,347)( 90,346)( 91,345)( 92,344)( 93,343)( 94,342)( 95,341)( 96,340)
( 97,339)( 98,338)( 99,337)(100,336)(101,335)(102,334)(103,333)(104,332)
(105,331)(106,330)(107,329)(108,328)(109,327)(110,326)(111,325)(112,324)
(113,323)(114,322)(115,321)(116,320)(117,319)(118,394)(119,396)(120,395)
(121,391)(122,393)(123,392)(124,427)(125,429)(126,428)(127,424)(128,426)
(129,425)(130,421)(131,423)(132,422)(133,418)(134,420)(135,419)(136,415)
(137,417)(138,416)(139,412)(140,414)(141,413)(142,409)(143,411)(144,410)
(145,406)(146,408)(147,407)(148,403)(149,405)(150,404)(151,400)(152,402)
(153,401)(154,397)(155,399)(156,398)(157,355)(158,357)(159,356)(160,352)
(161,354)(162,353)(163,388)(164,390)(165,389)(166,385)(167,387)(168,386)
(169,382)(170,384)(171,383)(172,379)(173,381)(174,380)(175,376)(176,378)
(177,377)(178,373)(179,375)(180,374)(181,370)(182,372)(183,371)(184,367)
(185,369)(186,368)(187,364)(188,366)(189,365)(190,361)(191,363)(192,362)
(193,358)(194,360)(195,359)(196,435)(197,434)(198,433)(199,432)(200,431)
(201,430)(202,468)(203,467)(204,466)(205,465)(206,464)(207,463)(208,462)
(209,461)(210,460)(211,459)(212,458)(213,457)(214,456)(215,455)(216,454)
(217,453)(218,452)(219,451)(220,450)(221,449)(222,448)(223,447)(224,446)
(225,445)(226,444)(227,443)(228,442)(229,441)(230,440)(231,439)(232,438)
(233,437)(234,436);;
s2 := (469,470);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(470)!( 2, 3)( 4, 37)( 5, 39)( 6, 38)( 7, 34)( 8, 36)( 9, 35)
( 10, 31)( 11, 33)( 12, 32)( 13, 28)( 14, 30)( 15, 29)( 16, 25)( 17, 27)
( 18, 26)( 19, 22)( 20, 24)( 21, 23)( 40, 81)( 41, 80)( 42, 79)( 43,117)
( 44,116)( 45,115)( 46,114)( 47,113)( 48,112)( 49,111)( 50,110)( 51,109)
( 52,108)( 53,107)( 54,106)( 55,105)( 56,104)( 57,103)( 58,102)( 59,101)
( 60,100)( 61, 99)( 62, 98)( 63, 97)( 64, 96)( 65, 95)( 66, 94)( 67, 93)
( 68, 92)( 69, 91)( 70, 90)( 71, 89)( 72, 88)( 73, 87)( 74, 86)( 75, 85)
( 76, 84)( 77, 83)( 78, 82)(119,120)(121,154)(122,156)(123,155)(124,151)
(125,153)(126,152)(127,148)(128,150)(129,149)(130,145)(131,147)(132,146)
(133,142)(134,144)(135,143)(136,139)(137,141)(138,140)(157,198)(158,197)
(159,196)(160,234)(161,233)(162,232)(163,231)(164,230)(165,229)(166,228)
(167,227)(168,226)(169,225)(170,224)(171,223)(172,222)(173,221)(174,220)
(175,219)(176,218)(177,217)(178,216)(179,215)(180,214)(181,213)(182,212)
(183,211)(184,210)(185,209)(186,208)(187,207)(188,206)(189,205)(190,204)
(191,203)(192,202)(193,201)(194,200)(195,199)(235,352)(236,354)(237,353)
(238,388)(239,390)(240,389)(241,385)(242,387)(243,386)(244,382)(245,384)
(246,383)(247,379)(248,381)(249,380)(250,376)(251,378)(252,377)(253,373)
(254,375)(255,374)(256,370)(257,372)(258,371)(259,367)(260,369)(261,368)
(262,364)(263,366)(264,365)(265,361)(266,363)(267,362)(268,358)(269,360)
(270,359)(271,355)(272,357)(273,356)(274,432)(275,431)(276,430)(277,468)
(278,467)(279,466)(280,465)(281,464)(282,463)(283,462)(284,461)(285,460)
(286,459)(287,458)(288,457)(289,456)(290,455)(291,454)(292,453)(293,452)
(294,451)(295,450)(296,449)(297,448)(298,447)(299,446)(300,445)(301,444)
(302,443)(303,442)(304,441)(305,440)(306,439)(307,438)(308,437)(309,436)
(310,435)(311,434)(312,433)(313,393)(314,392)(315,391)(316,429)(317,428)
(318,427)(319,426)(320,425)(321,424)(322,423)(323,422)(324,421)(325,420)
(326,419)(327,418)(328,417)(329,416)(330,415)(331,414)(332,413)(333,412)
(334,411)(335,410)(336,409)(337,408)(338,407)(339,406)(340,405)(341,404)
(342,403)(343,402)(344,401)(345,400)(346,399)(347,398)(348,397)(349,396)
(350,395)(351,394);
s1 := Sym(470)!( 1,277)( 2,279)( 3,278)( 4,274)( 5,276)( 6,275)( 7,310)
( 8,312)( 9,311)( 10,307)( 11,309)( 12,308)( 13,304)( 14,306)( 15,305)
( 16,301)( 17,303)( 18,302)( 19,298)( 20,300)( 21,299)( 22,295)( 23,297)
( 24,296)( 25,292)( 26,294)( 27,293)( 28,289)( 29,291)( 30,290)( 31,286)
( 32,288)( 33,287)( 34,283)( 35,285)( 36,284)( 37,280)( 38,282)( 39,281)
( 40,238)( 41,240)( 42,239)( 43,235)( 44,237)( 45,236)( 46,271)( 47,273)
( 48,272)( 49,268)( 50,270)( 51,269)( 52,265)( 53,267)( 54,266)( 55,262)
( 56,264)( 57,263)( 58,259)( 59,261)( 60,260)( 61,256)( 62,258)( 63,257)
( 64,253)( 65,255)( 66,254)( 67,250)( 68,252)( 69,251)( 70,247)( 71,249)
( 72,248)( 73,244)( 74,246)( 75,245)( 76,241)( 77,243)( 78,242)( 79,318)
( 80,317)( 81,316)( 82,315)( 83,314)( 84,313)( 85,351)( 86,350)( 87,349)
( 88,348)( 89,347)( 90,346)( 91,345)( 92,344)( 93,343)( 94,342)( 95,341)
( 96,340)( 97,339)( 98,338)( 99,337)(100,336)(101,335)(102,334)(103,333)
(104,332)(105,331)(106,330)(107,329)(108,328)(109,327)(110,326)(111,325)
(112,324)(113,323)(114,322)(115,321)(116,320)(117,319)(118,394)(119,396)
(120,395)(121,391)(122,393)(123,392)(124,427)(125,429)(126,428)(127,424)
(128,426)(129,425)(130,421)(131,423)(132,422)(133,418)(134,420)(135,419)
(136,415)(137,417)(138,416)(139,412)(140,414)(141,413)(142,409)(143,411)
(144,410)(145,406)(146,408)(147,407)(148,403)(149,405)(150,404)(151,400)
(152,402)(153,401)(154,397)(155,399)(156,398)(157,355)(158,357)(159,356)
(160,352)(161,354)(162,353)(163,388)(164,390)(165,389)(166,385)(167,387)
(168,386)(169,382)(170,384)(171,383)(172,379)(173,381)(174,380)(175,376)
(176,378)(177,377)(178,373)(179,375)(180,374)(181,370)(182,372)(183,371)
(184,367)(185,369)(186,368)(187,364)(188,366)(189,365)(190,361)(191,363)
(192,362)(193,358)(194,360)(195,359)(196,435)(197,434)(198,433)(199,432)
(200,431)(201,430)(202,468)(203,467)(204,466)(205,465)(206,464)(207,463)
(208,462)(209,461)(210,460)(211,459)(212,458)(213,457)(214,456)(215,455)
(216,454)(217,453)(218,452)(219,451)(220,450)(221,449)(222,448)(223,447)
(224,446)(225,445)(226,444)(227,443)(228,442)(229,441)(230,440)(231,439)
(232,438)(233,437)(234,436);
s2 := Sym(470)!(469,470);
poly := sub<Sym(470)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope