include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,470}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,470}*1880
if this polytope has a name.
Group : SmallGroup(1880,38)
Rank : 3
Schlafli Type : {2,470}
Number of vertices, edges, etc : 2, 470, 470
Order of s0s1s2 : 470
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,235}*940
5-fold quotients : {2,94}*376
10-fold quotients : {2,47}*188
47-fold quotients : {2,10}*40
94-fold quotients : {2,5}*20
235-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 49)( 5, 48)( 6, 47)( 7, 46)( 8, 45)( 9, 44)( 10, 43)( 11, 42)
( 12, 41)( 13, 40)( 14, 39)( 15, 38)( 16, 37)( 17, 36)( 18, 35)( 19, 34)
( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 26, 27)( 50,191)
( 51,237)( 52,236)( 53,235)( 54,234)( 55,233)( 56,232)( 57,231)( 58,230)
( 59,229)( 60,228)( 61,227)( 62,226)( 63,225)( 64,224)( 65,223)( 66,222)
( 67,221)( 68,220)( 69,219)( 70,218)( 71,217)( 72,216)( 73,215)( 74,214)
( 75,213)( 76,212)( 77,211)( 78,210)( 79,209)( 80,208)( 81,207)( 82,206)
( 83,205)( 84,204)( 85,203)( 86,202)( 87,201)( 88,200)( 89,199)( 90,198)
( 91,197)( 92,196)( 93,195)( 94,194)( 95,193)( 96,192)( 97,144)( 98,190)
( 99,189)(100,188)(101,187)(102,186)(103,185)(104,184)(105,183)(106,182)
(107,181)(108,180)(109,179)(110,178)(111,177)(112,176)(113,175)(114,174)
(115,173)(116,172)(117,171)(118,170)(119,169)(120,168)(121,167)(122,166)
(123,165)(124,164)(125,163)(126,162)(127,161)(128,160)(129,159)(130,158)
(131,157)(132,156)(133,155)(134,154)(135,153)(136,152)(137,151)(138,150)
(139,149)(140,148)(141,147)(142,146)(143,145)(239,284)(240,283)(241,282)
(242,281)(243,280)(244,279)(245,278)(246,277)(247,276)(248,275)(249,274)
(250,273)(251,272)(252,271)(253,270)(254,269)(255,268)(256,267)(257,266)
(258,265)(259,264)(260,263)(261,262)(285,426)(286,472)(287,471)(288,470)
(289,469)(290,468)(291,467)(292,466)(293,465)(294,464)(295,463)(296,462)
(297,461)(298,460)(299,459)(300,458)(301,457)(302,456)(303,455)(304,454)
(305,453)(306,452)(307,451)(308,450)(309,449)(310,448)(311,447)(312,446)
(313,445)(314,444)(315,443)(316,442)(317,441)(318,440)(319,439)(320,438)
(321,437)(322,436)(323,435)(324,434)(325,433)(326,432)(327,431)(328,430)
(329,429)(330,428)(331,427)(332,379)(333,425)(334,424)(335,423)(336,422)
(337,421)(338,420)(339,419)(340,418)(341,417)(342,416)(343,415)(344,414)
(345,413)(346,412)(347,411)(348,410)(349,409)(350,408)(351,407)(352,406)
(353,405)(354,404)(355,403)(356,402)(357,401)(358,400)(359,399)(360,398)
(361,397)(362,396)(363,395)(364,394)(365,393)(366,392)(367,391)(368,390)
(369,389)(370,388)(371,387)(372,386)(373,385)(374,384)(375,383)(376,382)
(377,381)(378,380);;
s2 := ( 3,286)( 4,285)( 5,331)( 6,330)( 7,329)( 8,328)( 9,327)( 10,326)
( 11,325)( 12,324)( 13,323)( 14,322)( 15,321)( 16,320)( 17,319)( 18,318)
( 19,317)( 20,316)( 21,315)( 22,314)( 23,313)( 24,312)( 25,311)( 26,310)
( 27,309)( 28,308)( 29,307)( 30,306)( 31,305)( 32,304)( 33,303)( 34,302)
( 35,301)( 36,300)( 37,299)( 38,298)( 39,297)( 40,296)( 41,295)( 42,294)
( 43,293)( 44,292)( 45,291)( 46,290)( 47,289)( 48,288)( 49,287)( 50,239)
( 51,238)( 52,284)( 53,283)( 54,282)( 55,281)( 56,280)( 57,279)( 58,278)
( 59,277)( 60,276)( 61,275)( 62,274)( 63,273)( 64,272)( 65,271)( 66,270)
( 67,269)( 68,268)( 69,267)( 70,266)( 71,265)( 72,264)( 73,263)( 74,262)
( 75,261)( 76,260)( 77,259)( 78,258)( 79,257)( 80,256)( 81,255)( 82,254)
( 83,253)( 84,252)( 85,251)( 86,250)( 87,249)( 88,248)( 89,247)( 90,246)
( 91,245)( 92,244)( 93,243)( 94,242)( 95,241)( 96,240)( 97,427)( 98,426)
( 99,472)(100,471)(101,470)(102,469)(103,468)(104,467)(105,466)(106,465)
(107,464)(108,463)(109,462)(110,461)(111,460)(112,459)(113,458)(114,457)
(115,456)(116,455)(117,454)(118,453)(119,452)(120,451)(121,450)(122,449)
(123,448)(124,447)(125,446)(126,445)(127,444)(128,443)(129,442)(130,441)
(131,440)(132,439)(133,438)(134,437)(135,436)(136,435)(137,434)(138,433)
(139,432)(140,431)(141,430)(142,429)(143,428)(144,380)(145,379)(146,425)
(147,424)(148,423)(149,422)(150,421)(151,420)(152,419)(153,418)(154,417)
(155,416)(156,415)(157,414)(158,413)(159,412)(160,411)(161,410)(162,409)
(163,408)(164,407)(165,406)(166,405)(167,404)(168,403)(169,402)(170,401)
(171,400)(172,399)(173,398)(174,397)(175,396)(176,395)(177,394)(178,393)
(179,392)(180,391)(181,390)(182,389)(183,388)(184,387)(185,386)(186,385)
(187,384)(188,383)(189,382)(190,381)(191,333)(192,332)(193,378)(194,377)
(195,376)(196,375)(197,374)(198,373)(199,372)(200,371)(201,370)(202,369)
(203,368)(204,367)(205,366)(206,365)(207,364)(208,363)(209,362)(210,361)
(211,360)(212,359)(213,358)(214,357)(215,356)(216,355)(217,354)(218,353)
(219,352)(220,351)(221,350)(222,349)(223,348)(224,347)(225,346)(226,345)
(227,344)(228,343)(229,342)(230,341)(231,340)(232,339)(233,338)(234,337)
(235,336)(236,335)(237,334);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(472)!(1,2);
s1 := Sym(472)!( 4, 49)( 5, 48)( 6, 47)( 7, 46)( 8, 45)( 9, 44)( 10, 43)
( 11, 42)( 12, 41)( 13, 40)( 14, 39)( 15, 38)( 16, 37)( 17, 36)( 18, 35)
( 19, 34)( 20, 33)( 21, 32)( 22, 31)( 23, 30)( 24, 29)( 25, 28)( 26, 27)
( 50,191)( 51,237)( 52,236)( 53,235)( 54,234)( 55,233)( 56,232)( 57,231)
( 58,230)( 59,229)( 60,228)( 61,227)( 62,226)( 63,225)( 64,224)( 65,223)
( 66,222)( 67,221)( 68,220)( 69,219)( 70,218)( 71,217)( 72,216)( 73,215)
( 74,214)( 75,213)( 76,212)( 77,211)( 78,210)( 79,209)( 80,208)( 81,207)
( 82,206)( 83,205)( 84,204)( 85,203)( 86,202)( 87,201)( 88,200)( 89,199)
( 90,198)( 91,197)( 92,196)( 93,195)( 94,194)( 95,193)( 96,192)( 97,144)
( 98,190)( 99,189)(100,188)(101,187)(102,186)(103,185)(104,184)(105,183)
(106,182)(107,181)(108,180)(109,179)(110,178)(111,177)(112,176)(113,175)
(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,168)(121,167)
(122,166)(123,165)(124,164)(125,163)(126,162)(127,161)(128,160)(129,159)
(130,158)(131,157)(132,156)(133,155)(134,154)(135,153)(136,152)(137,151)
(138,150)(139,149)(140,148)(141,147)(142,146)(143,145)(239,284)(240,283)
(241,282)(242,281)(243,280)(244,279)(245,278)(246,277)(247,276)(248,275)
(249,274)(250,273)(251,272)(252,271)(253,270)(254,269)(255,268)(256,267)
(257,266)(258,265)(259,264)(260,263)(261,262)(285,426)(286,472)(287,471)
(288,470)(289,469)(290,468)(291,467)(292,466)(293,465)(294,464)(295,463)
(296,462)(297,461)(298,460)(299,459)(300,458)(301,457)(302,456)(303,455)
(304,454)(305,453)(306,452)(307,451)(308,450)(309,449)(310,448)(311,447)
(312,446)(313,445)(314,444)(315,443)(316,442)(317,441)(318,440)(319,439)
(320,438)(321,437)(322,436)(323,435)(324,434)(325,433)(326,432)(327,431)
(328,430)(329,429)(330,428)(331,427)(332,379)(333,425)(334,424)(335,423)
(336,422)(337,421)(338,420)(339,419)(340,418)(341,417)(342,416)(343,415)
(344,414)(345,413)(346,412)(347,411)(348,410)(349,409)(350,408)(351,407)
(352,406)(353,405)(354,404)(355,403)(356,402)(357,401)(358,400)(359,399)
(360,398)(361,397)(362,396)(363,395)(364,394)(365,393)(366,392)(367,391)
(368,390)(369,389)(370,388)(371,387)(372,386)(373,385)(374,384)(375,383)
(376,382)(377,381)(378,380);
s2 := Sym(472)!( 3,286)( 4,285)( 5,331)( 6,330)( 7,329)( 8,328)( 9,327)
( 10,326)( 11,325)( 12,324)( 13,323)( 14,322)( 15,321)( 16,320)( 17,319)
( 18,318)( 19,317)( 20,316)( 21,315)( 22,314)( 23,313)( 24,312)( 25,311)
( 26,310)( 27,309)( 28,308)( 29,307)( 30,306)( 31,305)( 32,304)( 33,303)
( 34,302)( 35,301)( 36,300)( 37,299)( 38,298)( 39,297)( 40,296)( 41,295)
( 42,294)( 43,293)( 44,292)( 45,291)( 46,290)( 47,289)( 48,288)( 49,287)
( 50,239)( 51,238)( 52,284)( 53,283)( 54,282)( 55,281)( 56,280)( 57,279)
( 58,278)( 59,277)( 60,276)( 61,275)( 62,274)( 63,273)( 64,272)( 65,271)
( 66,270)( 67,269)( 68,268)( 69,267)( 70,266)( 71,265)( 72,264)( 73,263)
( 74,262)( 75,261)( 76,260)( 77,259)( 78,258)( 79,257)( 80,256)( 81,255)
( 82,254)( 83,253)( 84,252)( 85,251)( 86,250)( 87,249)( 88,248)( 89,247)
( 90,246)( 91,245)( 92,244)( 93,243)( 94,242)( 95,241)( 96,240)( 97,427)
( 98,426)( 99,472)(100,471)(101,470)(102,469)(103,468)(104,467)(105,466)
(106,465)(107,464)(108,463)(109,462)(110,461)(111,460)(112,459)(113,458)
(114,457)(115,456)(116,455)(117,454)(118,453)(119,452)(120,451)(121,450)
(122,449)(123,448)(124,447)(125,446)(126,445)(127,444)(128,443)(129,442)
(130,441)(131,440)(132,439)(133,438)(134,437)(135,436)(136,435)(137,434)
(138,433)(139,432)(140,431)(141,430)(142,429)(143,428)(144,380)(145,379)
(146,425)(147,424)(148,423)(149,422)(150,421)(151,420)(152,419)(153,418)
(154,417)(155,416)(156,415)(157,414)(158,413)(159,412)(160,411)(161,410)
(162,409)(163,408)(164,407)(165,406)(166,405)(167,404)(168,403)(169,402)
(170,401)(171,400)(172,399)(173,398)(174,397)(175,396)(176,395)(177,394)
(178,393)(179,392)(180,391)(181,390)(182,389)(183,388)(184,387)(185,386)
(186,385)(187,384)(188,383)(189,382)(190,381)(191,333)(192,332)(193,378)
(194,377)(195,376)(196,375)(197,374)(198,373)(199,372)(200,371)(201,370)
(202,369)(203,368)(204,367)(205,366)(206,365)(207,364)(208,363)(209,362)
(210,361)(211,360)(212,359)(213,358)(214,357)(215,356)(216,355)(217,354)
(218,353)(219,352)(220,351)(221,350)(222,349)(223,348)(224,347)(225,346)
(226,345)(227,344)(228,343)(229,342)(230,341)(231,340)(232,339)(233,338)
(234,337)(235,336)(236,335)(237,334);
poly := sub<Sym(472)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope