Polytope of Type {2,94}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,94}*376
if this polytope has a name.
Group : SmallGroup(376,11)
Rank : 3
Schlafli Type : {2,94}
Number of vertices, edges, etc : 2, 94, 94
Order of s0s1s2 : 94
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,94,2} of size 752
   {2,94,4} of size 1504
Vertex Figure Of :
   {2,2,94} of size 752
   {3,2,94} of size 1128
   {4,2,94} of size 1504
   {5,2,94} of size 1880
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,47}*188
   47-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,188}*752, {4,94}*752
   3-fold covers : {6,94}*1128, {2,282}*1128
   4-fold covers : {4,188}*1504, {8,94}*1504, {2,376}*1504
   5-fold covers : {10,94}*1880, {2,470}*1880
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,49)( 5,48)( 6,47)( 7,46)( 8,45)( 9,44)(10,43)(11,42)(12,41)(13,40)
(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29)
(25,28)(26,27)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(57,90)(58,89)(59,88)
(60,87)(61,86)(62,85)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)(70,77)
(71,76)(72,75)(73,74);;
s2 := ( 3,51)( 4,50)( 5,96)( 6,95)( 7,94)( 8,93)( 9,92)(10,91)(11,90)(12,89)
(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)(23,78)
(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)(34,67)
(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)(45,56)
(46,55)(47,54)(48,53)(49,52);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(96)!(1,2);
s1 := Sym(96)!( 4,49)( 5,48)( 6,47)( 7,46)( 8,45)( 9,44)(10,43)(11,42)(12,41)
(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)
(24,29)(25,28)(26,27)(51,96)(52,95)(53,94)(54,93)(55,92)(56,91)(57,90)(58,89)
(59,88)(60,87)(61,86)(62,85)(63,84)(64,83)(65,82)(66,81)(67,80)(68,79)(69,78)
(70,77)(71,76)(72,75)(73,74);
s2 := Sym(96)!( 3,51)( 4,50)( 5,96)( 6,95)( 7,94)( 8,93)( 9,92)(10,91)(11,90)
(12,89)(13,88)(14,87)(15,86)(16,85)(17,84)(18,83)(19,82)(20,81)(21,80)(22,79)
(23,78)(24,77)(25,76)(26,75)(27,74)(28,73)(29,72)(30,71)(31,70)(32,69)(33,68)
(34,67)(35,66)(36,65)(37,64)(38,63)(39,62)(40,61)(41,60)(42,59)(43,58)(44,57)
(45,56)(46,55)(47,54)(48,53)(49,52);
poly := sub<Sym(96)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope