include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {470,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {470,2}*1880
if this polytope has a name.
Group : SmallGroup(1880,38)
Rank : 3
Schlafli Type : {470,2}
Number of vertices, edges, etc : 470, 470, 2
Order of s0s1s2 : 470
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Self-Petrie
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {235,2}*940
5-fold quotients : {94,2}*376
10-fold quotients : {47,2}*188
47-fold quotients : {10,2}*40
94-fold quotients : {5,2}*20
235-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 47)( 3, 46)( 4, 45)( 5, 44)( 6, 43)( 7, 42)( 8, 41)( 9, 40)
( 10, 39)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 34)( 16, 33)( 17, 32)
( 18, 31)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 24, 25)( 48,189)
( 49,235)( 50,234)( 51,233)( 52,232)( 53,231)( 54,230)( 55,229)( 56,228)
( 57,227)( 58,226)( 59,225)( 60,224)( 61,223)( 62,222)( 63,221)( 64,220)
( 65,219)( 66,218)( 67,217)( 68,216)( 69,215)( 70,214)( 71,213)( 72,212)
( 73,211)( 74,210)( 75,209)( 76,208)( 77,207)( 78,206)( 79,205)( 80,204)
( 81,203)( 82,202)( 83,201)( 84,200)( 85,199)( 86,198)( 87,197)( 88,196)
( 89,195)( 90,194)( 91,193)( 92,192)( 93,191)( 94,190)( 95,142)( 96,188)
( 97,187)( 98,186)( 99,185)(100,184)(101,183)(102,182)(103,181)(104,180)
(105,179)(106,178)(107,177)(108,176)(109,175)(110,174)(111,173)(112,172)
(113,171)(114,170)(115,169)(116,168)(117,167)(118,166)(119,165)(120,164)
(121,163)(122,162)(123,161)(124,160)(125,159)(126,158)(127,157)(128,156)
(129,155)(130,154)(131,153)(132,152)(133,151)(134,150)(135,149)(136,148)
(137,147)(138,146)(139,145)(140,144)(141,143)(237,282)(238,281)(239,280)
(240,279)(241,278)(242,277)(243,276)(244,275)(245,274)(246,273)(247,272)
(248,271)(249,270)(250,269)(251,268)(252,267)(253,266)(254,265)(255,264)
(256,263)(257,262)(258,261)(259,260)(283,424)(284,470)(285,469)(286,468)
(287,467)(288,466)(289,465)(290,464)(291,463)(292,462)(293,461)(294,460)
(295,459)(296,458)(297,457)(298,456)(299,455)(300,454)(301,453)(302,452)
(303,451)(304,450)(305,449)(306,448)(307,447)(308,446)(309,445)(310,444)
(311,443)(312,442)(313,441)(314,440)(315,439)(316,438)(317,437)(318,436)
(319,435)(320,434)(321,433)(322,432)(323,431)(324,430)(325,429)(326,428)
(327,427)(328,426)(329,425)(330,377)(331,423)(332,422)(333,421)(334,420)
(335,419)(336,418)(337,417)(338,416)(339,415)(340,414)(341,413)(342,412)
(343,411)(344,410)(345,409)(346,408)(347,407)(348,406)(349,405)(350,404)
(351,403)(352,402)(353,401)(354,400)(355,399)(356,398)(357,397)(358,396)
(359,395)(360,394)(361,393)(362,392)(363,391)(364,390)(365,389)(366,388)
(367,387)(368,386)(369,385)(370,384)(371,383)(372,382)(373,381)(374,380)
(375,379)(376,378);;
s1 := ( 1,284)( 2,283)( 3,329)( 4,328)( 5,327)( 6,326)( 7,325)( 8,324)
( 9,323)( 10,322)( 11,321)( 12,320)( 13,319)( 14,318)( 15,317)( 16,316)
( 17,315)( 18,314)( 19,313)( 20,312)( 21,311)( 22,310)( 23,309)( 24,308)
( 25,307)( 26,306)( 27,305)( 28,304)( 29,303)( 30,302)( 31,301)( 32,300)
( 33,299)( 34,298)( 35,297)( 36,296)( 37,295)( 38,294)( 39,293)( 40,292)
( 41,291)( 42,290)( 43,289)( 44,288)( 45,287)( 46,286)( 47,285)( 48,237)
( 49,236)( 50,282)( 51,281)( 52,280)( 53,279)( 54,278)( 55,277)( 56,276)
( 57,275)( 58,274)( 59,273)( 60,272)( 61,271)( 62,270)( 63,269)( 64,268)
( 65,267)( 66,266)( 67,265)( 68,264)( 69,263)( 70,262)( 71,261)( 72,260)
( 73,259)( 74,258)( 75,257)( 76,256)( 77,255)( 78,254)( 79,253)( 80,252)
( 81,251)( 82,250)( 83,249)( 84,248)( 85,247)( 86,246)( 87,245)( 88,244)
( 89,243)( 90,242)( 91,241)( 92,240)( 93,239)( 94,238)( 95,425)( 96,424)
( 97,470)( 98,469)( 99,468)(100,467)(101,466)(102,465)(103,464)(104,463)
(105,462)(106,461)(107,460)(108,459)(109,458)(110,457)(111,456)(112,455)
(113,454)(114,453)(115,452)(116,451)(117,450)(118,449)(119,448)(120,447)
(121,446)(122,445)(123,444)(124,443)(125,442)(126,441)(127,440)(128,439)
(129,438)(130,437)(131,436)(132,435)(133,434)(134,433)(135,432)(136,431)
(137,430)(138,429)(139,428)(140,427)(141,426)(142,378)(143,377)(144,423)
(145,422)(146,421)(147,420)(148,419)(149,418)(150,417)(151,416)(152,415)
(153,414)(154,413)(155,412)(156,411)(157,410)(158,409)(159,408)(160,407)
(161,406)(162,405)(163,404)(164,403)(165,402)(166,401)(167,400)(168,399)
(169,398)(170,397)(171,396)(172,395)(173,394)(174,393)(175,392)(176,391)
(177,390)(178,389)(179,388)(180,387)(181,386)(182,385)(183,384)(184,383)
(185,382)(186,381)(187,380)(188,379)(189,331)(190,330)(191,376)(192,375)
(193,374)(194,373)(195,372)(196,371)(197,370)(198,369)(199,368)(200,367)
(201,366)(202,365)(203,364)(204,363)(205,362)(206,361)(207,360)(208,359)
(209,358)(210,357)(211,356)(212,355)(213,354)(214,353)(215,352)(216,351)
(217,350)(218,349)(219,348)(220,347)(221,346)(222,345)(223,344)(224,343)
(225,342)(226,341)(227,340)(228,339)(229,338)(230,337)(231,336)(232,335)
(233,334)(234,333)(235,332);;
s2 := (471,472);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(472)!( 2, 47)( 3, 46)( 4, 45)( 5, 44)( 6, 43)( 7, 42)( 8, 41)
( 9, 40)( 10, 39)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 34)( 16, 33)
( 17, 32)( 18, 31)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 24, 25)
( 48,189)( 49,235)( 50,234)( 51,233)( 52,232)( 53,231)( 54,230)( 55,229)
( 56,228)( 57,227)( 58,226)( 59,225)( 60,224)( 61,223)( 62,222)( 63,221)
( 64,220)( 65,219)( 66,218)( 67,217)( 68,216)( 69,215)( 70,214)( 71,213)
( 72,212)( 73,211)( 74,210)( 75,209)( 76,208)( 77,207)( 78,206)( 79,205)
( 80,204)( 81,203)( 82,202)( 83,201)( 84,200)( 85,199)( 86,198)( 87,197)
( 88,196)( 89,195)( 90,194)( 91,193)( 92,192)( 93,191)( 94,190)( 95,142)
( 96,188)( 97,187)( 98,186)( 99,185)(100,184)(101,183)(102,182)(103,181)
(104,180)(105,179)(106,178)(107,177)(108,176)(109,175)(110,174)(111,173)
(112,172)(113,171)(114,170)(115,169)(116,168)(117,167)(118,166)(119,165)
(120,164)(121,163)(122,162)(123,161)(124,160)(125,159)(126,158)(127,157)
(128,156)(129,155)(130,154)(131,153)(132,152)(133,151)(134,150)(135,149)
(136,148)(137,147)(138,146)(139,145)(140,144)(141,143)(237,282)(238,281)
(239,280)(240,279)(241,278)(242,277)(243,276)(244,275)(245,274)(246,273)
(247,272)(248,271)(249,270)(250,269)(251,268)(252,267)(253,266)(254,265)
(255,264)(256,263)(257,262)(258,261)(259,260)(283,424)(284,470)(285,469)
(286,468)(287,467)(288,466)(289,465)(290,464)(291,463)(292,462)(293,461)
(294,460)(295,459)(296,458)(297,457)(298,456)(299,455)(300,454)(301,453)
(302,452)(303,451)(304,450)(305,449)(306,448)(307,447)(308,446)(309,445)
(310,444)(311,443)(312,442)(313,441)(314,440)(315,439)(316,438)(317,437)
(318,436)(319,435)(320,434)(321,433)(322,432)(323,431)(324,430)(325,429)
(326,428)(327,427)(328,426)(329,425)(330,377)(331,423)(332,422)(333,421)
(334,420)(335,419)(336,418)(337,417)(338,416)(339,415)(340,414)(341,413)
(342,412)(343,411)(344,410)(345,409)(346,408)(347,407)(348,406)(349,405)
(350,404)(351,403)(352,402)(353,401)(354,400)(355,399)(356,398)(357,397)
(358,396)(359,395)(360,394)(361,393)(362,392)(363,391)(364,390)(365,389)
(366,388)(367,387)(368,386)(369,385)(370,384)(371,383)(372,382)(373,381)
(374,380)(375,379)(376,378);
s1 := Sym(472)!( 1,284)( 2,283)( 3,329)( 4,328)( 5,327)( 6,326)( 7,325)
( 8,324)( 9,323)( 10,322)( 11,321)( 12,320)( 13,319)( 14,318)( 15,317)
( 16,316)( 17,315)( 18,314)( 19,313)( 20,312)( 21,311)( 22,310)( 23,309)
( 24,308)( 25,307)( 26,306)( 27,305)( 28,304)( 29,303)( 30,302)( 31,301)
( 32,300)( 33,299)( 34,298)( 35,297)( 36,296)( 37,295)( 38,294)( 39,293)
( 40,292)( 41,291)( 42,290)( 43,289)( 44,288)( 45,287)( 46,286)( 47,285)
( 48,237)( 49,236)( 50,282)( 51,281)( 52,280)( 53,279)( 54,278)( 55,277)
( 56,276)( 57,275)( 58,274)( 59,273)( 60,272)( 61,271)( 62,270)( 63,269)
( 64,268)( 65,267)( 66,266)( 67,265)( 68,264)( 69,263)( 70,262)( 71,261)
( 72,260)( 73,259)( 74,258)( 75,257)( 76,256)( 77,255)( 78,254)( 79,253)
( 80,252)( 81,251)( 82,250)( 83,249)( 84,248)( 85,247)( 86,246)( 87,245)
( 88,244)( 89,243)( 90,242)( 91,241)( 92,240)( 93,239)( 94,238)( 95,425)
( 96,424)( 97,470)( 98,469)( 99,468)(100,467)(101,466)(102,465)(103,464)
(104,463)(105,462)(106,461)(107,460)(108,459)(109,458)(110,457)(111,456)
(112,455)(113,454)(114,453)(115,452)(116,451)(117,450)(118,449)(119,448)
(120,447)(121,446)(122,445)(123,444)(124,443)(125,442)(126,441)(127,440)
(128,439)(129,438)(130,437)(131,436)(132,435)(133,434)(134,433)(135,432)
(136,431)(137,430)(138,429)(139,428)(140,427)(141,426)(142,378)(143,377)
(144,423)(145,422)(146,421)(147,420)(148,419)(149,418)(150,417)(151,416)
(152,415)(153,414)(154,413)(155,412)(156,411)(157,410)(158,409)(159,408)
(160,407)(161,406)(162,405)(163,404)(164,403)(165,402)(166,401)(167,400)
(168,399)(169,398)(170,397)(171,396)(172,395)(173,394)(174,393)(175,392)
(176,391)(177,390)(178,389)(179,388)(180,387)(181,386)(182,385)(183,384)
(184,383)(185,382)(186,381)(187,380)(188,379)(189,331)(190,330)(191,376)
(192,375)(193,374)(194,373)(195,372)(196,371)(197,370)(198,369)(199,368)
(200,367)(201,366)(202,365)(203,364)(204,363)(205,362)(206,361)(207,360)
(208,359)(209,358)(210,357)(211,356)(212,355)(213,354)(214,353)(215,352)
(216,351)(217,350)(218,349)(219,348)(220,347)(221,346)(222,345)(223,344)
(224,343)(225,342)(226,341)(227,340)(228,339)(229,338)(230,337)(231,336)
(232,335)(233,334)(234,333)(235,332);
s2 := Sym(472)!(471,472);
poly := sub<Sym(472)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope