Polytope of Type {2,476}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,476}*1904
if this polytope has a name.
Group : SmallGroup(1904,160)
Rank : 3
Schlafli Type : {2,476}
Number of vertices, edges, etc : 2, 476, 476
Order of s0s1s2 : 476
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,238}*952
   4-fold quotients : {2,119}*476
   7-fold quotients : {2,68}*272
   14-fold quotients : {2,34}*136
   17-fold quotients : {2,28}*112
   28-fold quotients : {2,17}*68
   34-fold quotients : {2,14}*56
   68-fold quotients : {2,7}*28
   119-fold quotients : {2,4}*16
   238-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4, 19)(  5, 18)(  6, 17)(  7, 16)(  8, 15)(  9, 14)( 10, 13)( 11, 12)
( 20,105)( 21,121)( 22,120)( 23,119)( 24,118)( 25,117)( 26,116)( 27,115)
( 28,114)( 29,113)( 30,112)( 31,111)( 32,110)( 33,109)( 34,108)( 35,107)
( 36,106)( 37, 88)( 38,104)( 39,103)( 40,102)( 41,101)( 42,100)( 43, 99)
( 44, 98)( 45, 97)( 46, 96)( 47, 95)( 48, 94)( 49, 93)( 50, 92)( 51, 91)
( 52, 90)( 53, 89)( 54, 71)( 55, 87)( 56, 86)( 57, 85)( 58, 84)( 59, 83)
( 60, 82)( 61, 81)( 62, 80)( 63, 79)( 64, 78)( 65, 77)( 66, 76)( 67, 75)
( 68, 74)( 69, 73)( 70, 72)(123,138)(124,137)(125,136)(126,135)(127,134)
(128,133)(129,132)(130,131)(139,224)(140,240)(141,239)(142,238)(143,237)
(144,236)(145,235)(146,234)(147,233)(148,232)(149,231)(150,230)(151,229)
(152,228)(153,227)(154,226)(155,225)(156,207)(157,223)(158,222)(159,221)
(160,220)(161,219)(162,218)(163,217)(164,216)(165,215)(166,214)(167,213)
(168,212)(169,211)(170,210)(171,209)(172,208)(173,190)(174,206)(175,205)
(176,204)(177,203)(178,202)(179,201)(180,200)(181,199)(182,198)(183,197)
(184,196)(185,195)(186,194)(187,193)(188,192)(189,191)(241,360)(242,376)
(243,375)(244,374)(245,373)(246,372)(247,371)(248,370)(249,369)(250,368)
(251,367)(252,366)(253,365)(254,364)(255,363)(256,362)(257,361)(258,462)
(259,478)(260,477)(261,476)(262,475)(263,474)(264,473)(265,472)(266,471)
(267,470)(268,469)(269,468)(270,467)(271,466)(272,465)(273,464)(274,463)
(275,445)(276,461)(277,460)(278,459)(279,458)(280,457)(281,456)(282,455)
(283,454)(284,453)(285,452)(286,451)(287,450)(288,449)(289,448)(290,447)
(291,446)(292,428)(293,444)(294,443)(295,442)(296,441)(297,440)(298,439)
(299,438)(300,437)(301,436)(302,435)(303,434)(304,433)(305,432)(306,431)
(307,430)(308,429)(309,411)(310,427)(311,426)(312,425)(313,424)(314,423)
(315,422)(316,421)(317,420)(318,419)(319,418)(320,417)(321,416)(322,415)
(323,414)(324,413)(325,412)(326,394)(327,410)(328,409)(329,408)(330,407)
(331,406)(332,405)(333,404)(334,403)(335,402)(336,401)(337,400)(338,399)
(339,398)(340,397)(341,396)(342,395)(343,377)(344,393)(345,392)(346,391)
(347,390)(348,389)(349,388)(350,387)(351,386)(352,385)(353,384)(354,383)
(355,382)(356,381)(357,380)(358,379)(359,378);;
s2 := (  3,259)(  4,258)(  5,274)(  6,273)(  7,272)(  8,271)(  9,270)( 10,269)
( 11,268)( 12,267)( 13,266)( 14,265)( 15,264)( 16,263)( 17,262)( 18,261)
( 19,260)( 20,242)( 21,241)( 22,257)( 23,256)( 24,255)( 25,254)( 26,253)
( 27,252)( 28,251)( 29,250)( 30,249)( 31,248)( 32,247)( 33,246)( 34,245)
( 35,244)( 36,243)( 37,344)( 38,343)( 39,359)( 40,358)( 41,357)( 42,356)
( 43,355)( 44,354)( 45,353)( 46,352)( 47,351)( 48,350)( 49,349)( 50,348)
( 51,347)( 52,346)( 53,345)( 54,327)( 55,326)( 56,342)( 57,341)( 58,340)
( 59,339)( 60,338)( 61,337)( 62,336)( 63,335)( 64,334)( 65,333)( 66,332)
( 67,331)( 68,330)( 69,329)( 70,328)( 71,310)( 72,309)( 73,325)( 74,324)
( 75,323)( 76,322)( 77,321)( 78,320)( 79,319)( 80,318)( 81,317)( 82,316)
( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)( 88,293)( 89,292)( 90,308)
( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)( 96,302)( 97,301)( 98,300)
( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)(105,276)(106,275)
(107,291)(108,290)(109,289)(110,288)(111,287)(112,286)(113,285)(114,284)
(115,283)(116,282)(117,281)(118,280)(119,279)(120,278)(121,277)(122,378)
(123,377)(124,393)(125,392)(126,391)(127,390)(128,389)(129,388)(130,387)
(131,386)(132,385)(133,384)(134,383)(135,382)(136,381)(137,380)(138,379)
(139,361)(140,360)(141,376)(142,375)(143,374)(144,373)(145,372)(146,371)
(147,370)(148,369)(149,368)(150,367)(151,366)(152,365)(153,364)(154,363)
(155,362)(156,463)(157,462)(158,478)(159,477)(160,476)(161,475)(162,474)
(163,473)(164,472)(165,471)(166,470)(167,469)(168,468)(169,467)(170,466)
(171,465)(172,464)(173,446)(174,445)(175,461)(176,460)(177,459)(178,458)
(179,457)(180,456)(181,455)(182,454)(183,453)(184,452)(185,451)(186,450)
(187,449)(188,448)(189,447)(190,429)(191,428)(192,444)(193,443)(194,442)
(195,441)(196,440)(197,439)(198,438)(199,437)(200,436)(201,435)(202,434)
(203,433)(204,432)(205,431)(206,430)(207,412)(208,411)(209,427)(210,426)
(211,425)(212,424)(213,423)(214,422)(215,421)(216,420)(217,419)(218,418)
(219,417)(220,416)(221,415)(222,414)(223,413)(224,395)(225,394)(226,410)
(227,409)(228,408)(229,407)(230,406)(231,405)(232,404)(233,403)(234,402)
(235,401)(236,400)(237,399)(238,398)(239,397)(240,396);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(478)!(1,2);
s1 := Sym(478)!(  4, 19)(  5, 18)(  6, 17)(  7, 16)(  8, 15)(  9, 14)( 10, 13)
( 11, 12)( 20,105)( 21,121)( 22,120)( 23,119)( 24,118)( 25,117)( 26,116)
( 27,115)( 28,114)( 29,113)( 30,112)( 31,111)( 32,110)( 33,109)( 34,108)
( 35,107)( 36,106)( 37, 88)( 38,104)( 39,103)( 40,102)( 41,101)( 42,100)
( 43, 99)( 44, 98)( 45, 97)( 46, 96)( 47, 95)( 48, 94)( 49, 93)( 50, 92)
( 51, 91)( 52, 90)( 53, 89)( 54, 71)( 55, 87)( 56, 86)( 57, 85)( 58, 84)
( 59, 83)( 60, 82)( 61, 81)( 62, 80)( 63, 79)( 64, 78)( 65, 77)( 66, 76)
( 67, 75)( 68, 74)( 69, 73)( 70, 72)(123,138)(124,137)(125,136)(126,135)
(127,134)(128,133)(129,132)(130,131)(139,224)(140,240)(141,239)(142,238)
(143,237)(144,236)(145,235)(146,234)(147,233)(148,232)(149,231)(150,230)
(151,229)(152,228)(153,227)(154,226)(155,225)(156,207)(157,223)(158,222)
(159,221)(160,220)(161,219)(162,218)(163,217)(164,216)(165,215)(166,214)
(167,213)(168,212)(169,211)(170,210)(171,209)(172,208)(173,190)(174,206)
(175,205)(176,204)(177,203)(178,202)(179,201)(180,200)(181,199)(182,198)
(183,197)(184,196)(185,195)(186,194)(187,193)(188,192)(189,191)(241,360)
(242,376)(243,375)(244,374)(245,373)(246,372)(247,371)(248,370)(249,369)
(250,368)(251,367)(252,366)(253,365)(254,364)(255,363)(256,362)(257,361)
(258,462)(259,478)(260,477)(261,476)(262,475)(263,474)(264,473)(265,472)
(266,471)(267,470)(268,469)(269,468)(270,467)(271,466)(272,465)(273,464)
(274,463)(275,445)(276,461)(277,460)(278,459)(279,458)(280,457)(281,456)
(282,455)(283,454)(284,453)(285,452)(286,451)(287,450)(288,449)(289,448)
(290,447)(291,446)(292,428)(293,444)(294,443)(295,442)(296,441)(297,440)
(298,439)(299,438)(300,437)(301,436)(302,435)(303,434)(304,433)(305,432)
(306,431)(307,430)(308,429)(309,411)(310,427)(311,426)(312,425)(313,424)
(314,423)(315,422)(316,421)(317,420)(318,419)(319,418)(320,417)(321,416)
(322,415)(323,414)(324,413)(325,412)(326,394)(327,410)(328,409)(329,408)
(330,407)(331,406)(332,405)(333,404)(334,403)(335,402)(336,401)(337,400)
(338,399)(339,398)(340,397)(341,396)(342,395)(343,377)(344,393)(345,392)
(346,391)(347,390)(348,389)(349,388)(350,387)(351,386)(352,385)(353,384)
(354,383)(355,382)(356,381)(357,380)(358,379)(359,378);
s2 := Sym(478)!(  3,259)(  4,258)(  5,274)(  6,273)(  7,272)(  8,271)(  9,270)
( 10,269)( 11,268)( 12,267)( 13,266)( 14,265)( 15,264)( 16,263)( 17,262)
( 18,261)( 19,260)( 20,242)( 21,241)( 22,257)( 23,256)( 24,255)( 25,254)
( 26,253)( 27,252)( 28,251)( 29,250)( 30,249)( 31,248)( 32,247)( 33,246)
( 34,245)( 35,244)( 36,243)( 37,344)( 38,343)( 39,359)( 40,358)( 41,357)
( 42,356)( 43,355)( 44,354)( 45,353)( 46,352)( 47,351)( 48,350)( 49,349)
( 50,348)( 51,347)( 52,346)( 53,345)( 54,327)( 55,326)( 56,342)( 57,341)
( 58,340)( 59,339)( 60,338)( 61,337)( 62,336)( 63,335)( 64,334)( 65,333)
( 66,332)( 67,331)( 68,330)( 69,329)( 70,328)( 71,310)( 72,309)( 73,325)
( 74,324)( 75,323)( 76,322)( 77,321)( 78,320)( 79,319)( 80,318)( 81,317)
( 82,316)( 83,315)( 84,314)( 85,313)( 86,312)( 87,311)( 88,293)( 89,292)
( 90,308)( 91,307)( 92,306)( 93,305)( 94,304)( 95,303)( 96,302)( 97,301)
( 98,300)( 99,299)(100,298)(101,297)(102,296)(103,295)(104,294)(105,276)
(106,275)(107,291)(108,290)(109,289)(110,288)(111,287)(112,286)(113,285)
(114,284)(115,283)(116,282)(117,281)(118,280)(119,279)(120,278)(121,277)
(122,378)(123,377)(124,393)(125,392)(126,391)(127,390)(128,389)(129,388)
(130,387)(131,386)(132,385)(133,384)(134,383)(135,382)(136,381)(137,380)
(138,379)(139,361)(140,360)(141,376)(142,375)(143,374)(144,373)(145,372)
(146,371)(147,370)(148,369)(149,368)(150,367)(151,366)(152,365)(153,364)
(154,363)(155,362)(156,463)(157,462)(158,478)(159,477)(160,476)(161,475)
(162,474)(163,473)(164,472)(165,471)(166,470)(167,469)(168,468)(169,467)
(170,466)(171,465)(172,464)(173,446)(174,445)(175,461)(176,460)(177,459)
(178,458)(179,457)(180,456)(181,455)(182,454)(183,453)(184,452)(185,451)
(186,450)(187,449)(188,448)(189,447)(190,429)(191,428)(192,444)(193,443)
(194,442)(195,441)(196,440)(197,439)(198,438)(199,437)(200,436)(201,435)
(202,434)(203,433)(204,432)(205,431)(206,430)(207,412)(208,411)(209,427)
(210,426)(211,425)(212,424)(213,423)(214,422)(215,421)(216,420)(217,419)
(218,418)(219,417)(220,416)(221,415)(222,414)(223,413)(224,395)(225,394)
(226,410)(227,409)(228,408)(229,407)(230,406)(231,405)(232,404)(233,403)
(234,402)(235,401)(236,400)(237,399)(238,398)(239,397)(240,396);
poly := sub<Sym(478)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope