include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {476}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {476}*952
Also Known As : 476-gon, {476}. if this polytope has another name.
Group : SmallGroup(952,26)
Rank : 2
Schlafli Type : {476}
Number of vertices, edges, etc : 476, 476
Order of s0s1 : 476
Special Properties :
Universal
Spherical
Locally Spherical
Orientable
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{476,2} of size 1904
Vertex Figure Of :
{2,476} of size 1904
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {238}*476
4-fold quotients : {119}*238
7-fold quotients : {68}*136
14-fold quotients : {34}*68
17-fold quotients : {28}*56
28-fold quotients : {17}*34
34-fold quotients : {14}*28
68-fold quotients : {7}*14
119-fold quotients : {4}*8
238-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
2-fold covers : {952}*1904
Permutation Representation (GAP) :
s0 := ( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)( 9, 10)
( 18,103)( 19,119)( 20,118)( 21,117)( 22,116)( 23,115)( 24,114)( 25,113)
( 26,112)( 27,111)( 28,110)( 29,109)( 30,108)( 31,107)( 32,106)( 33,105)
( 34,104)( 35, 86)( 36,102)( 37,101)( 38,100)( 39, 99)( 40, 98)( 41, 97)
( 42, 96)( 43, 95)( 44, 94)( 45, 93)( 46, 92)( 47, 91)( 48, 90)( 49, 89)
( 50, 88)( 51, 87)( 52, 69)( 53, 85)( 54, 84)( 55, 83)( 56, 82)( 57, 81)
( 58, 80)( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)( 64, 74)( 65, 73)
( 66, 72)( 67, 71)( 68, 70)(121,136)(122,135)(123,134)(124,133)(125,132)
(126,131)(127,130)(128,129)(137,222)(138,238)(139,237)(140,236)(141,235)
(142,234)(143,233)(144,232)(145,231)(146,230)(147,229)(148,228)(149,227)
(150,226)(151,225)(152,224)(153,223)(154,205)(155,221)(156,220)(157,219)
(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)(164,212)(165,211)
(166,210)(167,209)(168,208)(169,207)(170,206)(171,188)(172,204)(173,203)
(174,202)(175,201)(176,200)(177,199)(178,198)(179,197)(180,196)(181,195)
(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)(239,358)(240,374)
(241,373)(242,372)(243,371)(244,370)(245,369)(246,368)(247,367)(248,366)
(249,365)(250,364)(251,363)(252,362)(253,361)(254,360)(255,359)(256,460)
(257,476)(258,475)(259,474)(260,473)(261,472)(262,471)(263,470)(264,469)
(265,468)(266,467)(267,466)(268,465)(269,464)(270,463)(271,462)(272,461)
(273,443)(274,459)(275,458)(276,457)(277,456)(278,455)(279,454)(280,453)
(281,452)(282,451)(283,450)(284,449)(285,448)(286,447)(287,446)(288,445)
(289,444)(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)(296,437)
(297,436)(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)(304,429)
(305,428)(306,427)(307,409)(308,425)(309,424)(310,423)(311,422)(312,421)
(313,420)(314,419)(315,418)(316,417)(317,416)(318,415)(319,414)(320,413)
(321,412)(322,411)(323,410)(324,392)(325,408)(326,407)(327,406)(328,405)
(329,404)(330,403)(331,402)(332,401)(333,400)(334,399)(335,398)(336,397)
(337,396)(338,395)(339,394)(340,393)(341,375)(342,391)(343,390)(344,389)
(345,388)(346,387)(347,386)(348,385)(349,384)(350,383)(351,382)(352,381)
(353,380)(354,379)(355,378)(356,377)(357,376);;
s1 := ( 1,257)( 2,256)( 3,272)( 4,271)( 5,270)( 6,269)( 7,268)( 8,267)
( 9,266)( 10,265)( 11,264)( 12,263)( 13,262)( 14,261)( 15,260)( 16,259)
( 17,258)( 18,240)( 19,239)( 20,255)( 21,254)( 22,253)( 23,252)( 24,251)
( 25,250)( 26,249)( 27,248)( 28,247)( 29,246)( 30,245)( 31,244)( 32,243)
( 33,242)( 34,241)( 35,342)( 36,341)( 37,357)( 38,356)( 39,355)( 40,354)
( 41,353)( 42,352)( 43,351)( 44,350)( 45,349)( 46,348)( 47,347)( 48,346)
( 49,345)( 50,344)( 51,343)( 52,325)( 53,324)( 54,340)( 55,339)( 56,338)
( 57,337)( 58,336)( 59,335)( 60,334)( 61,333)( 62,332)( 63,331)( 64,330)
( 65,329)( 66,328)( 67,327)( 68,326)( 69,308)( 70,307)( 71,323)( 72,322)
( 73,321)( 74,320)( 75,319)( 76,318)( 77,317)( 78,316)( 79,315)( 80,314)
( 81,313)( 82,312)( 83,311)( 84,310)( 85,309)( 86,291)( 87,290)( 88,306)
( 89,305)( 90,304)( 91,303)( 92,302)( 93,301)( 94,300)( 95,299)( 96,298)
( 97,297)( 98,296)( 99,295)(100,294)(101,293)(102,292)(103,274)(104,273)
(105,289)(106,288)(107,287)(108,286)(109,285)(110,284)(111,283)(112,282)
(113,281)(114,280)(115,279)(116,278)(117,277)(118,276)(119,275)(120,376)
(121,375)(122,391)(123,390)(124,389)(125,388)(126,387)(127,386)(128,385)
(129,384)(130,383)(131,382)(132,381)(133,380)(134,379)(135,378)(136,377)
(137,359)(138,358)(139,374)(140,373)(141,372)(142,371)(143,370)(144,369)
(145,368)(146,367)(147,366)(148,365)(149,364)(150,363)(151,362)(152,361)
(153,360)(154,461)(155,460)(156,476)(157,475)(158,474)(159,473)(160,472)
(161,471)(162,470)(163,469)(164,468)(165,467)(166,466)(167,465)(168,464)
(169,463)(170,462)(171,444)(172,443)(173,459)(174,458)(175,457)(176,456)
(177,455)(178,454)(179,453)(180,452)(181,451)(182,450)(183,449)(184,448)
(185,447)(186,446)(187,445)(188,427)(189,426)(190,442)(191,441)(192,440)
(193,439)(194,438)(195,437)(196,436)(197,435)(198,434)(199,433)(200,432)
(201,431)(202,430)(203,429)(204,428)(205,410)(206,409)(207,425)(208,424)
(209,423)(210,422)(211,421)(212,420)(213,419)(214,418)(215,417)(216,416)
(217,415)(218,414)(219,413)(220,412)(221,411)(222,393)(223,392)(224,408)
(225,407)(226,406)(227,405)(228,404)(229,403)(230,402)(231,401)(232,400)
(233,399)(234,398)(235,397)(236,396)(237,395)(238,394);;
poly := Group([s0,s1]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;; s1 := F.2;;
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(476)!( 2, 17)( 3, 16)( 4, 15)( 5, 14)( 6, 13)( 7, 12)( 8, 11)
( 9, 10)( 18,103)( 19,119)( 20,118)( 21,117)( 22,116)( 23,115)( 24,114)
( 25,113)( 26,112)( 27,111)( 28,110)( 29,109)( 30,108)( 31,107)( 32,106)
( 33,105)( 34,104)( 35, 86)( 36,102)( 37,101)( 38,100)( 39, 99)( 40, 98)
( 41, 97)( 42, 96)( 43, 95)( 44, 94)( 45, 93)( 46, 92)( 47, 91)( 48, 90)
( 49, 89)( 50, 88)( 51, 87)( 52, 69)( 53, 85)( 54, 84)( 55, 83)( 56, 82)
( 57, 81)( 58, 80)( 59, 79)( 60, 78)( 61, 77)( 62, 76)( 63, 75)( 64, 74)
( 65, 73)( 66, 72)( 67, 71)( 68, 70)(121,136)(122,135)(123,134)(124,133)
(125,132)(126,131)(127,130)(128,129)(137,222)(138,238)(139,237)(140,236)
(141,235)(142,234)(143,233)(144,232)(145,231)(146,230)(147,229)(148,228)
(149,227)(150,226)(151,225)(152,224)(153,223)(154,205)(155,221)(156,220)
(157,219)(158,218)(159,217)(160,216)(161,215)(162,214)(163,213)(164,212)
(165,211)(166,210)(167,209)(168,208)(169,207)(170,206)(171,188)(172,204)
(173,203)(174,202)(175,201)(176,200)(177,199)(178,198)(179,197)(180,196)
(181,195)(182,194)(183,193)(184,192)(185,191)(186,190)(187,189)(239,358)
(240,374)(241,373)(242,372)(243,371)(244,370)(245,369)(246,368)(247,367)
(248,366)(249,365)(250,364)(251,363)(252,362)(253,361)(254,360)(255,359)
(256,460)(257,476)(258,475)(259,474)(260,473)(261,472)(262,471)(263,470)
(264,469)(265,468)(266,467)(267,466)(268,465)(269,464)(270,463)(271,462)
(272,461)(273,443)(274,459)(275,458)(276,457)(277,456)(278,455)(279,454)
(280,453)(281,452)(282,451)(283,450)(284,449)(285,448)(286,447)(287,446)
(288,445)(289,444)(290,426)(291,442)(292,441)(293,440)(294,439)(295,438)
(296,437)(297,436)(298,435)(299,434)(300,433)(301,432)(302,431)(303,430)
(304,429)(305,428)(306,427)(307,409)(308,425)(309,424)(310,423)(311,422)
(312,421)(313,420)(314,419)(315,418)(316,417)(317,416)(318,415)(319,414)
(320,413)(321,412)(322,411)(323,410)(324,392)(325,408)(326,407)(327,406)
(328,405)(329,404)(330,403)(331,402)(332,401)(333,400)(334,399)(335,398)
(336,397)(337,396)(338,395)(339,394)(340,393)(341,375)(342,391)(343,390)
(344,389)(345,388)(346,387)(347,386)(348,385)(349,384)(350,383)(351,382)
(352,381)(353,380)(354,379)(355,378)(356,377)(357,376);
s1 := Sym(476)!( 1,257)( 2,256)( 3,272)( 4,271)( 5,270)( 6,269)( 7,268)
( 8,267)( 9,266)( 10,265)( 11,264)( 12,263)( 13,262)( 14,261)( 15,260)
( 16,259)( 17,258)( 18,240)( 19,239)( 20,255)( 21,254)( 22,253)( 23,252)
( 24,251)( 25,250)( 26,249)( 27,248)( 28,247)( 29,246)( 30,245)( 31,244)
( 32,243)( 33,242)( 34,241)( 35,342)( 36,341)( 37,357)( 38,356)( 39,355)
( 40,354)( 41,353)( 42,352)( 43,351)( 44,350)( 45,349)( 46,348)( 47,347)
( 48,346)( 49,345)( 50,344)( 51,343)( 52,325)( 53,324)( 54,340)( 55,339)
( 56,338)( 57,337)( 58,336)( 59,335)( 60,334)( 61,333)( 62,332)( 63,331)
( 64,330)( 65,329)( 66,328)( 67,327)( 68,326)( 69,308)( 70,307)( 71,323)
( 72,322)( 73,321)( 74,320)( 75,319)( 76,318)( 77,317)( 78,316)( 79,315)
( 80,314)( 81,313)( 82,312)( 83,311)( 84,310)( 85,309)( 86,291)( 87,290)
( 88,306)( 89,305)( 90,304)( 91,303)( 92,302)( 93,301)( 94,300)( 95,299)
( 96,298)( 97,297)( 98,296)( 99,295)(100,294)(101,293)(102,292)(103,274)
(104,273)(105,289)(106,288)(107,287)(108,286)(109,285)(110,284)(111,283)
(112,282)(113,281)(114,280)(115,279)(116,278)(117,277)(118,276)(119,275)
(120,376)(121,375)(122,391)(123,390)(124,389)(125,388)(126,387)(127,386)
(128,385)(129,384)(130,383)(131,382)(132,381)(133,380)(134,379)(135,378)
(136,377)(137,359)(138,358)(139,374)(140,373)(141,372)(142,371)(143,370)
(144,369)(145,368)(146,367)(147,366)(148,365)(149,364)(150,363)(151,362)
(152,361)(153,360)(154,461)(155,460)(156,476)(157,475)(158,474)(159,473)
(160,472)(161,471)(162,470)(163,469)(164,468)(165,467)(166,466)(167,465)
(168,464)(169,463)(170,462)(171,444)(172,443)(173,459)(174,458)(175,457)
(176,456)(177,455)(178,454)(179,453)(180,452)(181,451)(182,450)(183,449)
(184,448)(185,447)(186,446)(187,445)(188,427)(189,426)(190,442)(191,441)
(192,440)(193,439)(194,438)(195,437)(196,436)(197,435)(198,434)(199,433)
(200,432)(201,431)(202,430)(203,429)(204,428)(205,410)(206,409)(207,425)
(208,424)(209,423)(210,422)(211,421)(212,420)(213,419)(214,418)(215,417)
(216,416)(217,415)(218,414)(219,413)(220,412)(221,411)(222,393)(223,392)
(224,408)(225,407)(226,406)(227,405)(228,404)(229,403)(230,402)(231,401)
(232,400)(233,399)(234,398)(235,397)(236,396)(237,395)(238,394);
poly := sub<Sym(476)|s0,s1>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope